Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missouri genetic disorder’s roots untangled by international team

19.10.2005


An international team of researchers has partially untangled the genetic details of a mysterious disorder that formerly caused seizures and death in infant boys within a month of birth.



The researchers discovered a rare change in the DNA of two eastern Missouri families with a history of a condition called X-linked recessive idiopathic hypoparathyroidism (XLHPT): a portion of the X chromosome, a human sex chromosome, has been removed and replaced by a copy of a much larger section of genetic material from chromosome 2. Alterations of such large regions of genetic code that stably pass from one generation to the next are generally rare and have never before been observed in the human X chromosome.

The study was led by scientists at Oxford University in England and included researchers from Washington University School of Medicine and Shriners Hospital for Children in St. Louis.


In the long term, the disorder’s links to blood calcium levels and parathyroid hormone secretion may someday help scientists seeking to develop new treatments for osteoporosis. For now, though, the findings almost bring to a close a decades-long investigation into the disorder that has plagued two Missouri families for generations.

"So far, XLHPT has only been observed in these two eastern Missouri families and it only affects males--the females are carriers," says Michael Whyte, M.D., professor of medicine, pediatrics and of genetics at Washington University School of Medicine. "Seizures and death within a month of birth is a dramatic set of symptoms, so if this problem had ever developed anywhere else in the world, it seems likely that it would have been reported."

The findings appear in the October issue of The Journal of Clinical Investigation.

XLHPT has likely affected family members at least since the 19th century and was initially described in 1960 by Virginia Peden, a faculty member at Saint Louis University. Although there initially seemed to be two separate families afflicted with the disorder, in 1996 researchers were able to scientifically detect signs of a common ancestry between the two family lines.

When it became possible to measure parathyroid hormone in the 1970s, doctors recognized that the families’ male children had very low levels of that hormone in their blood. Produced by the parathyroid gland, the hormone is a regulator of calcium and other materials in the bloodstream.

Once they knew that affected boys had low parathyroid levels, doctors began successfully treating them with high doses of vitamin D that restored calcium levels in their circulatory system. As a result, men affected by XLHPT now have a normal life expectancy.

Whyte and others gradually gained insights into the disorder over the course of the past three decades. In 1986, an autopsy of a patient with the condition revealed that the parathyroid glands were missing and presumably never formed.

"This made it obvious that the genetic changes in these families were somehow disrupting the activities of genes responsible for making the parathyroid glands during embryonic development," Whyte explains. "Four years later, a team at Oxford led by Dr. Rajesh Thakker determined where those changes were taking place on the X chromosome."

Thakker, who is the May Professor of Medicine at Oxford, has continued to be involved in efforts to untangle the cause of XLHPT and was senior investigator for the latest study.

When investigators determined that a region of genetic material on the X chromosome had been replaced, they turned to the Human Genome Project for data on what genes were in the missing segment. To their surprise, there were none--the missing region appeared to be a gene desert lacking any information used to make proteins.

Scientists then expanded their search for an explanation and noted that a gene called SOX3 was just a short distance away from the segment removed from the X chromosome. This opened up the possibility that molecules regulating the SOX3 gene’s activity might normally bind to the missing segment of the X chromosome. With that piece of the chromosome gone, SOX3 may not function as it should.

"The investigators at Oxford showed that SOX3 is active in the right area of the mouse embryo and at the right time to be a contributor to development of the parathyroid glands, so that’s a hint that it might be the gene through which the formation of the parathyroid gland is disrupted," says Deborah Wenkert, M.D., a researcher at Shriners Hospital in St. Louis.

According to Whyte, a complete understanding of how the genetic change is disrupting the formation of the parathyroid glands may one day be useful for researchers working on new treatments for osteoporosis, a bone-weakening condition common in the elderly.

"A fragment of parathyroid hormone is being used to treat osteoporosis right now," he notes. "Anything that switches on or switches off parathyroid hormone secretion could potentially be useful for treating osteoporosis and perhaps other bone disorders."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>