Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missouri genetic disorder’s roots untangled by international team

19.10.2005


An international team of researchers has partially untangled the genetic details of a mysterious disorder that formerly caused seizures and death in infant boys within a month of birth.



The researchers discovered a rare change in the DNA of two eastern Missouri families with a history of a condition called X-linked recessive idiopathic hypoparathyroidism (XLHPT): a portion of the X chromosome, a human sex chromosome, has been removed and replaced by a copy of a much larger section of genetic material from chromosome 2. Alterations of such large regions of genetic code that stably pass from one generation to the next are generally rare and have never before been observed in the human X chromosome.

The study was led by scientists at Oxford University in England and included researchers from Washington University School of Medicine and Shriners Hospital for Children in St. Louis.


In the long term, the disorder’s links to blood calcium levels and parathyroid hormone secretion may someday help scientists seeking to develop new treatments for osteoporosis. For now, though, the findings almost bring to a close a decades-long investigation into the disorder that has plagued two Missouri families for generations.

"So far, XLHPT has only been observed in these two eastern Missouri families and it only affects males--the females are carriers," says Michael Whyte, M.D., professor of medicine, pediatrics and of genetics at Washington University School of Medicine. "Seizures and death within a month of birth is a dramatic set of symptoms, so if this problem had ever developed anywhere else in the world, it seems likely that it would have been reported."

The findings appear in the October issue of The Journal of Clinical Investigation.

XLHPT has likely affected family members at least since the 19th century and was initially described in 1960 by Virginia Peden, a faculty member at Saint Louis University. Although there initially seemed to be two separate families afflicted with the disorder, in 1996 researchers were able to scientifically detect signs of a common ancestry between the two family lines.

When it became possible to measure parathyroid hormone in the 1970s, doctors recognized that the families’ male children had very low levels of that hormone in their blood. Produced by the parathyroid gland, the hormone is a regulator of calcium and other materials in the bloodstream.

Once they knew that affected boys had low parathyroid levels, doctors began successfully treating them with high doses of vitamin D that restored calcium levels in their circulatory system. As a result, men affected by XLHPT now have a normal life expectancy.

Whyte and others gradually gained insights into the disorder over the course of the past three decades. In 1986, an autopsy of a patient with the condition revealed that the parathyroid glands were missing and presumably never formed.

"This made it obvious that the genetic changes in these families were somehow disrupting the activities of genes responsible for making the parathyroid glands during embryonic development," Whyte explains. "Four years later, a team at Oxford led by Dr. Rajesh Thakker determined where those changes were taking place on the X chromosome."

Thakker, who is the May Professor of Medicine at Oxford, has continued to be involved in efforts to untangle the cause of XLHPT and was senior investigator for the latest study.

When investigators determined that a region of genetic material on the X chromosome had been replaced, they turned to the Human Genome Project for data on what genes were in the missing segment. To their surprise, there were none--the missing region appeared to be a gene desert lacking any information used to make proteins.

Scientists then expanded their search for an explanation and noted that a gene called SOX3 was just a short distance away from the segment removed from the X chromosome. This opened up the possibility that molecules regulating the SOX3 gene’s activity might normally bind to the missing segment of the X chromosome. With that piece of the chromosome gone, SOX3 may not function as it should.

"The investigators at Oxford showed that SOX3 is active in the right area of the mouse embryo and at the right time to be a contributor to development of the parathyroid glands, so that’s a hint that it might be the gene through which the formation of the parathyroid gland is disrupted," says Deborah Wenkert, M.D., a researcher at Shriners Hospital in St. Louis.

According to Whyte, a complete understanding of how the genetic change is disrupting the formation of the parathyroid glands may one day be useful for researchers working on new treatments for osteoporosis, a bone-weakening condition common in the elderly.

"A fragment of parathyroid hormone is being used to treat osteoporosis right now," he notes. "Anything that switches on or switches off parathyroid hormone secretion could potentially be useful for treating osteoporosis and perhaps other bone disorders."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>