Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missouri genetic disorder’s roots untangled by international team

19.10.2005


An international team of researchers has partially untangled the genetic details of a mysterious disorder that formerly caused seizures and death in infant boys within a month of birth.



The researchers discovered a rare change in the DNA of two eastern Missouri families with a history of a condition called X-linked recessive idiopathic hypoparathyroidism (XLHPT): a portion of the X chromosome, a human sex chromosome, has been removed and replaced by a copy of a much larger section of genetic material from chromosome 2. Alterations of such large regions of genetic code that stably pass from one generation to the next are generally rare and have never before been observed in the human X chromosome.

The study was led by scientists at Oxford University in England and included researchers from Washington University School of Medicine and Shriners Hospital for Children in St. Louis.


In the long term, the disorder’s links to blood calcium levels and parathyroid hormone secretion may someday help scientists seeking to develop new treatments for osteoporosis. For now, though, the findings almost bring to a close a decades-long investigation into the disorder that has plagued two Missouri families for generations.

"So far, XLHPT has only been observed in these two eastern Missouri families and it only affects males--the females are carriers," says Michael Whyte, M.D., professor of medicine, pediatrics and of genetics at Washington University School of Medicine. "Seizures and death within a month of birth is a dramatic set of symptoms, so if this problem had ever developed anywhere else in the world, it seems likely that it would have been reported."

The findings appear in the October issue of The Journal of Clinical Investigation.

XLHPT has likely affected family members at least since the 19th century and was initially described in 1960 by Virginia Peden, a faculty member at Saint Louis University. Although there initially seemed to be two separate families afflicted with the disorder, in 1996 researchers were able to scientifically detect signs of a common ancestry between the two family lines.

When it became possible to measure parathyroid hormone in the 1970s, doctors recognized that the families’ male children had very low levels of that hormone in their blood. Produced by the parathyroid gland, the hormone is a regulator of calcium and other materials in the bloodstream.

Once they knew that affected boys had low parathyroid levels, doctors began successfully treating them with high doses of vitamin D that restored calcium levels in their circulatory system. As a result, men affected by XLHPT now have a normal life expectancy.

Whyte and others gradually gained insights into the disorder over the course of the past three decades. In 1986, an autopsy of a patient with the condition revealed that the parathyroid glands were missing and presumably never formed.

"This made it obvious that the genetic changes in these families were somehow disrupting the activities of genes responsible for making the parathyroid glands during embryonic development," Whyte explains. "Four years later, a team at Oxford led by Dr. Rajesh Thakker determined where those changes were taking place on the X chromosome."

Thakker, who is the May Professor of Medicine at Oxford, has continued to be involved in efforts to untangle the cause of XLHPT and was senior investigator for the latest study.

When investigators determined that a region of genetic material on the X chromosome had been replaced, they turned to the Human Genome Project for data on what genes were in the missing segment. To their surprise, there were none--the missing region appeared to be a gene desert lacking any information used to make proteins.

Scientists then expanded their search for an explanation and noted that a gene called SOX3 was just a short distance away from the segment removed from the X chromosome. This opened up the possibility that molecules regulating the SOX3 gene’s activity might normally bind to the missing segment of the X chromosome. With that piece of the chromosome gone, SOX3 may not function as it should.

"The investigators at Oxford showed that SOX3 is active in the right area of the mouse embryo and at the right time to be a contributor to development of the parathyroid glands, so that’s a hint that it might be the gene through which the formation of the parathyroid gland is disrupted," says Deborah Wenkert, M.D., a researcher at Shriners Hospital in St. Louis.

According to Whyte, a complete understanding of how the genetic change is disrupting the formation of the parathyroid glands may one day be useful for researchers working on new treatments for osteoporosis, a bone-weakening condition common in the elderly.

"A fragment of parathyroid hormone is being used to treat osteoporosis right now," he notes. "Anything that switches on or switches off parathyroid hormone secretion could potentially be useful for treating osteoporosis and perhaps other bone disorders."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>