Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missouri genetic disorder’s roots untangled by international team

19.10.2005


An international team of researchers has partially untangled the genetic details of a mysterious disorder that formerly caused seizures and death in infant boys within a month of birth.



The researchers discovered a rare change in the DNA of two eastern Missouri families with a history of a condition called X-linked recessive idiopathic hypoparathyroidism (XLHPT): a portion of the X chromosome, a human sex chromosome, has been removed and replaced by a copy of a much larger section of genetic material from chromosome 2. Alterations of such large regions of genetic code that stably pass from one generation to the next are generally rare and have never before been observed in the human X chromosome.

The study was led by scientists at Oxford University in England and included researchers from Washington University School of Medicine and Shriners Hospital for Children in St. Louis.


In the long term, the disorder’s links to blood calcium levels and parathyroid hormone secretion may someday help scientists seeking to develop new treatments for osteoporosis. For now, though, the findings almost bring to a close a decades-long investigation into the disorder that has plagued two Missouri families for generations.

"So far, XLHPT has only been observed in these two eastern Missouri families and it only affects males--the females are carriers," says Michael Whyte, M.D., professor of medicine, pediatrics and of genetics at Washington University School of Medicine. "Seizures and death within a month of birth is a dramatic set of symptoms, so if this problem had ever developed anywhere else in the world, it seems likely that it would have been reported."

The findings appear in the October issue of The Journal of Clinical Investigation.

XLHPT has likely affected family members at least since the 19th century and was initially described in 1960 by Virginia Peden, a faculty member at Saint Louis University. Although there initially seemed to be two separate families afflicted with the disorder, in 1996 researchers were able to scientifically detect signs of a common ancestry between the two family lines.

When it became possible to measure parathyroid hormone in the 1970s, doctors recognized that the families’ male children had very low levels of that hormone in their blood. Produced by the parathyroid gland, the hormone is a regulator of calcium and other materials in the bloodstream.

Once they knew that affected boys had low parathyroid levels, doctors began successfully treating them with high doses of vitamin D that restored calcium levels in their circulatory system. As a result, men affected by XLHPT now have a normal life expectancy.

Whyte and others gradually gained insights into the disorder over the course of the past three decades. In 1986, an autopsy of a patient with the condition revealed that the parathyroid glands were missing and presumably never formed.

"This made it obvious that the genetic changes in these families were somehow disrupting the activities of genes responsible for making the parathyroid glands during embryonic development," Whyte explains. "Four years later, a team at Oxford led by Dr. Rajesh Thakker determined where those changes were taking place on the X chromosome."

Thakker, who is the May Professor of Medicine at Oxford, has continued to be involved in efforts to untangle the cause of XLHPT and was senior investigator for the latest study.

When investigators determined that a region of genetic material on the X chromosome had been replaced, they turned to the Human Genome Project for data on what genes were in the missing segment. To their surprise, there were none--the missing region appeared to be a gene desert lacking any information used to make proteins.

Scientists then expanded their search for an explanation and noted that a gene called SOX3 was just a short distance away from the segment removed from the X chromosome. This opened up the possibility that molecules regulating the SOX3 gene’s activity might normally bind to the missing segment of the X chromosome. With that piece of the chromosome gone, SOX3 may not function as it should.

"The investigators at Oxford showed that SOX3 is active in the right area of the mouse embryo and at the right time to be a contributor to development of the parathyroid glands, so that’s a hint that it might be the gene through which the formation of the parathyroid gland is disrupted," says Deborah Wenkert, M.D., a researcher at Shriners Hospital in St. Louis.

According to Whyte, a complete understanding of how the genetic change is disrupting the formation of the parathyroid glands may one day be useful for researchers working on new treatments for osteoporosis, a bone-weakening condition common in the elderly.

"A fragment of parathyroid hormone is being used to treat osteoporosis right now," he notes. "Anything that switches on or switches off parathyroid hormone secretion could potentially be useful for treating osteoporosis and perhaps other bone disorders."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>