Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers offer proof-of-concept for Altered Nuclear Transfer

17.10.2005


Scientists at Whitehead Institute for Biomedical Research have successfully demonstrated that a theoretical--and controversial--technique for generating embryonic stem cells is indeed possible, at least in mice.

The theory, called altered nuclear transfer (ANT), proposes that researchers first create genetically altered embryos that are unable to implant in a uterus, and then extract stem cells from these embryos. Because the embryos cannot implant, they are by definition not "potential" human lives. Some suggest that this would quell the protests of critics who claim that embryonic stem cell research necessitates the destruction of human life. Scientists and ethicists have debated the merits of this approach, but so far it has not been achieved.

"The purpose of our study was to provide a scientific basis for the ethical debate," says Whitehead Member Rudolf Jaenisch, lead author on the paper that will be published in the October 16 online edition of the journal Nature. "Our work is the first proof-of-principle study to show that altered nuclear transfer not only works but is extremely efficient."



First proposed by William Hurlbut, Stanford University professor and member of the President’s Council on Bioethics, ANT has been described as an ethical alternative to somatic cell nuclear transfer (SCNT), also known as therapeutic cloning.

For SCNT, a donor nucleus, for example one taken from a skin cell, is implanted into a donor egg cell from which the nucleus had been removed. This egg cell is then tricked into thinking it has been fertilized. That causes it to grow into a blastocyst--a mass of about 100 cells--from which stem cells are removed. These embryonic stem cells can divide and replicate themselves indefinitely, and they can also form any type of tissue in the human body. However, to cull these stem cells, the blastocyst must be destroyed, which some critics insist is tantamount to destroying a human life.

The procedure theorized by Hurlbut is similar to SCNT, but with one crucial twist: Before the donor nucleus is transferred into the egg cell, its DNA is altered so that the resulting blastocyst has no chance of ever becoming a viable embryo. As a result, a "potential human being" is not destroyed once stem cells have been extracted.

Jaenisch--a firm supporter of all forms of human embryonic stem cell research--has shown that technical concerns about this approach can be overcome.

Jaenisch and Alexander Meissner, a graduate student in his lab, focused on a gene called Cdx2, which enables an embryo to grow a placenta. In order to create a blastocyst that cannot implant in a uterus, the researchers disabled Cdx2 in mouse cells.

They accomplished this with a technique called RNA interference, or RNAi. Here, short interfering RNA (siRNA) molecules are designed to target an individual gene and disrupt its ability to produce protein. In effect, the gene is shut off. Jaenisch and Meissner designed a particular form of siRNA that shut off this gene in the donor nucleus and then incorporated itself into all the cells comprising the blastocyst. As a result, all of the resulting mouse blastocysts were incapable of implantation.

However, once the stem cells had been extracted from the blastocysts, Cdx2 was still disabled in each of these new cells, something that needed to be repaired in order for these cells to be useful. To correct this, Meissner deleted the siRNA molecule by transferring a plasmid into each cell. (A plasmid is a unit of DNA that can replicate in a cell apart from the nucleus. Plasmids are usually found in bacteria, and they are a staple for recombinant DNA techniques.) The stem cells resulting from this procedure proved to be just as robust and versatile as stem cells procured in the more traditional fashion.

"The success of this procedure in no way precludes the need to pursue all forms of human embryonic stem cell research," says Jaenisch, who is also a professor of biology at MIT. "Human embryonic stem cells are extraordinarily complicated. If we are ever to realize their therapeutic potential, we must use all known tools and techniques in order to explore the mechanisms that give these cells such startling characteristics."

ANT, Jaenisch emphasizes, is a modification, but not an alternative, to nuclear transfer, since the approach requires additional manipulations of the donor cells. He hopes that this modification may help resolve some of the issues surrounding work with embryonic stem cells and allow federal funding.

David Cameron | EurekAlert!
Further information:
http://www.mit.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>