Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers offer proof-of-concept for Altered Nuclear Transfer

17.10.2005


Scientists at Whitehead Institute for Biomedical Research have successfully demonstrated that a theoretical--and controversial--technique for generating embryonic stem cells is indeed possible, at least in mice.

The theory, called altered nuclear transfer (ANT), proposes that researchers first create genetically altered embryos that are unable to implant in a uterus, and then extract stem cells from these embryos. Because the embryos cannot implant, they are by definition not "potential" human lives. Some suggest that this would quell the protests of critics who claim that embryonic stem cell research necessitates the destruction of human life. Scientists and ethicists have debated the merits of this approach, but so far it has not been achieved.

"The purpose of our study was to provide a scientific basis for the ethical debate," says Whitehead Member Rudolf Jaenisch, lead author on the paper that will be published in the October 16 online edition of the journal Nature. "Our work is the first proof-of-principle study to show that altered nuclear transfer not only works but is extremely efficient."



First proposed by William Hurlbut, Stanford University professor and member of the President’s Council on Bioethics, ANT has been described as an ethical alternative to somatic cell nuclear transfer (SCNT), also known as therapeutic cloning.

For SCNT, a donor nucleus, for example one taken from a skin cell, is implanted into a donor egg cell from which the nucleus had been removed. This egg cell is then tricked into thinking it has been fertilized. That causes it to grow into a blastocyst--a mass of about 100 cells--from which stem cells are removed. These embryonic stem cells can divide and replicate themselves indefinitely, and they can also form any type of tissue in the human body. However, to cull these stem cells, the blastocyst must be destroyed, which some critics insist is tantamount to destroying a human life.

The procedure theorized by Hurlbut is similar to SCNT, but with one crucial twist: Before the donor nucleus is transferred into the egg cell, its DNA is altered so that the resulting blastocyst has no chance of ever becoming a viable embryo. As a result, a "potential human being" is not destroyed once stem cells have been extracted.

Jaenisch--a firm supporter of all forms of human embryonic stem cell research--has shown that technical concerns about this approach can be overcome.

Jaenisch and Alexander Meissner, a graduate student in his lab, focused on a gene called Cdx2, which enables an embryo to grow a placenta. In order to create a blastocyst that cannot implant in a uterus, the researchers disabled Cdx2 in mouse cells.

They accomplished this with a technique called RNA interference, or RNAi. Here, short interfering RNA (siRNA) molecules are designed to target an individual gene and disrupt its ability to produce protein. In effect, the gene is shut off. Jaenisch and Meissner designed a particular form of siRNA that shut off this gene in the donor nucleus and then incorporated itself into all the cells comprising the blastocyst. As a result, all of the resulting mouse blastocysts were incapable of implantation.

However, once the stem cells had been extracted from the blastocysts, Cdx2 was still disabled in each of these new cells, something that needed to be repaired in order for these cells to be useful. To correct this, Meissner deleted the siRNA molecule by transferring a plasmid into each cell. (A plasmid is a unit of DNA that can replicate in a cell apart from the nucleus. Plasmids are usually found in bacteria, and they are a staple for recombinant DNA techniques.) The stem cells resulting from this procedure proved to be just as robust and versatile as stem cells procured in the more traditional fashion.

"The success of this procedure in no way precludes the need to pursue all forms of human embryonic stem cell research," says Jaenisch, who is also a professor of biology at MIT. "Human embryonic stem cells are extraordinarily complicated. If we are ever to realize their therapeutic potential, we must use all known tools and techniques in order to explore the mechanisms that give these cells such startling characteristics."

ANT, Jaenisch emphasizes, is a modification, but not an alternative, to nuclear transfer, since the approach requires additional manipulations of the donor cells. He hopes that this modification may help resolve some of the issues surrounding work with embryonic stem cells and allow federal funding.

David Cameron | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

Topologische Quantenchemie

21.07.2017 | Life Sciences

Pulses of electrons manipulate nanomagnets and store information

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>