Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists uncover new clues to how crucial molecular gatekeepers work

12.10.2005


Understanding how voltage-gated ion channels operate is requisite for improving disease treatment



One of the biggest mysteries in molecular biology is exactly how ion channels – tiny protein pores through which molecules such as calcium and potassium flow in and out of cells – operate. Such channels can be extremely important; members of the voltage-gated ion channel family are crucial to generating electrical pulses in the brain and heart, carrying signals in nerves and muscles. When channel function goes awry, the resulting diseases – known as channelopathies, including epilepsy, a number of cardiomyopathies and cystic fibrosis – can be devastating.

Ion channels are also controversial, with two competing theories of how they open and close. Now, scientists at Jefferson Medical College, reporting October 6, 2005 in the journal Neuron, have detailed a part of this intricate process, providing evidence to support one of the theories. A better understanding of how these channels work is key to developing new drugs to treat ion channel-based disorders.


According to Richard Horn, Ph.D., professor of physiology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, voltage-gated ion channels are large proteins with a pore that pierces the cell membrane. They open and close in response to voltage changes across the cell membrane, and the channels determine when and which ions are permitted to cross a cell membrane.

In the conventional theory, when an electrical impulse called an action potential travels along a nerve, the cell membrane charge changes. The inside of the cell (normally electrically negative), becomes more positive. In turn, the voltage sensor, a positively charged transmembrane segment called S4, moves towards the outside of the cell through a small molecular gasket called a gating pore. This movement somehow causes the ion channel to open, releasing positively charged ions to flow across the cell membrane. After the action potential is over, the cell’s inside becomes negative again, and the membrane returns to its normal resting state.

The more recent and controversial theory proposed by Nobel laureate Roderick MacKinnon of Rockefeller University holds that a kind of molecular paddle comprised of the S4 segment and part of the S3 segment moves through the cell membrane, carrying S4’s positive charges with it across the lipid. As in the conventional theory, the S4 movement controls the channel’s opening and closing. The two theories differ in part because the paddle must move its positive charges all the way across the cell membrane. The conventional theory says that charges move a short distance through the gating pore.

In the current work, Dr. Horn and colleague Christopher Ahern, Ph.D., a research assistant in the Department of Physiology at Jefferson Medical College, showed that the field through which the voltage sensor’s charges moved is very short, lending support to the conventional model.

"Using a molecular tape measure with a very fine resolution – 1.24 Angstroms – we tethered charges to the voltage sensor," Dr. Horn explains. "When the tether is too long, the voltage sensor can’t pull it through the electric field," meaning the electric field is highly focused.

"This is another nail in the coffin of the paddle model," he says, "because the thickness of the electric field is much smaller than predicted by that model. The measurement is unambiguous in terms of the relationship between length of the tether and how much charge gets pulled through the electric field.

Next, the researchers are tackling the relationship between S4’s movement and the gates that open and close the channels.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>