Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feedback loop found that could forestall liver disease

12.10.2005


Researchers at UT Southwestern Medical Center have discovered that the small intestine communicates with the liver to control the production of bile acids - a finding that has great medical implications in treating people at risk for certain types of liver disease.



"We’ve discovered a new hormone, and new hormones are always exciting," said Dr. Steven Kliewer, professor of molecular biology and pharmacology and senior author of a study available online and appearing in the October issue of Cell Metabolism.

The findings may eventually play a role in understanding and preventing liver damage that can occur in biliary cirrhosis, viral hepatitis, alcoholic liver disease and pregnancy.


The central elements in the research are the body’s bile acids - powerful and essential detergents that help digest fatty foods and fat-soluble vitamins in the small intestine.

The liver makes bile acids out of cholesterol and sends them to the gallbladder, where they’re stored until food is digested. The presence of food stimulates the gallbladder into releasing the bile acids to the small intestine, where they do their work. Finally, they’re absorbed into the bloodstream and returned to the liver.

Because they’re so powerful, bile acids can damage the body if not controlled properly.

"These bile acids are really nasty in terms of being strong detergents," said Dr. Kliewer, holder of the Nancy B. and Jake L. Hamon Distinguished Chair in Basic Cancer Research.

Scientists have previously known about a mechanism within the liver that prevents too much bile acid from being produced. Normally, a protein called CYP7A1 stimulates production of the acids. When enough bile acids are made, they trigger a series of reactions that blocks the gene for CYP7A1, and production stops.

For this study, UT Southwestern researchers looked at a protein in mice called fibroblast growth factor 15 (FGF15), which is part of a cascade of chemical reactions that also dialed down production of CYP7A1 and reduced the production of bile acids in the liver.

Surprisingly, they found that FGF15 was made in the small intestine, not in the liver, suggesting a new role for the small intestine in regulating bile acid levels.

When the researchers injected FGF15 into the bloodstream, CYP7A1 production in the liver was again shut down. Conversely, mutant mice lacking FGF15 made too much CYP7A1, and thus had abnormally high levels of bile acids.

"We can inject FGF15 in the jugular vein, and see the effects in the liver," Dr. Kliewer said.

These discoveries pointed to FGF15 acting as a hormone, which is defined as a substance that’s secreted into the bloodstream to work on distant targets.

The findings may be relevant to diseases that involve a condition called cholestatis, in which the bile ducts are blocked. When that happens bile acids accumulate in the liver and severe liver disease may follow. Cholestatis can also occur in patients who are getting all their nutrition through intravenous feeding, because the gallbladder never receives the signal from the small intestine to release bile acids.

Dr. Kliewer said perhaps giving cholestatis patients FGF19 - the human equivalent of FGF15 - may turn off the overproduction of harmful bile acids in these cases.

"So now we have a hormone that’s not going to damage the liver, that we could perhaps administer and turn off the production of bile acids, and that could alleviate one of the important causes of cholestatis," he said. "I think that’s one of the exciting implications of this."

Future research is needed to determine whether the fibroblast growth factor protein family prevents liver disease in animals, Dr. Kliewer said.

Other UT Southwestern researchers involved in the study were Drs. Takeshi Inagaki and Mihwa Choi, postdoctoral research fellows in molecular biology; Dr. Antonio Moschetta, postdoctoral research fellow in pharmacology and a research associate in the Howard Hughes Medical Institute; Li Peng, senior research assistant in molecular biology; Dr. Carolyn Cummins, postdoctoral research fellow in pharmacology and HHMI research associate; Dr. Jeffrey McDonald, assistant professor of molecular genetics; Dr. James Richardson, professor of pathology; Dr. Robert Gerard, associate professor of internal medicine and of molecular biology; Dr. Joyce Repa, assistant professor of physiology; and Dr. David Mangelsdorf, professor of pharmacology and an HHMI investigator.
Researchers from GlaxoSmithKline Research and Development also participated.

The work was supported by the National Institutes of Health, the Welch Foundation and HHMI.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>