Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Past experience of pheromones induces dominant courtship behavior in fruit flies


By investigating the interplay between pheromone signaling and behavior in fruit flies, researchers have begun to understand how an adult fly’s earlier experience as a young individual can influence its behavior towards other flies as an adult. In particular, the researchers found that pheromone signals in the context of experience with adult flies can influence how young flies will behave once they reach maturity. The work is reported by Jean-Francois Ferveur and colleagues at the Universite de Bourgogne, France, and the University of Manchester, United Kingdom.

When an adult male fruit fly encounters a young male fly, he will actively court the younger individual, sometimes becoming aggressive. These young males that have encountered older flies will go on to similarly dominate other adult males that had encountered only young flies--something in the early experience of the "dominant" flies makes them more aggressive. In the new work, researchers investigated exactly what it is about past experience of these flies that influences adult behavior. Clues caused the researchers to suspect that a key role was played by a chemical signal--a pheromone--carried by adult males during the early encounter.

To prove this, the researches used mutant flies that lack the normal adult pheromones, and they covered these pheromone-defective flies with a variety of other smells. The researchers were able to demonstrate that a male shows courtship dominance behavior over young males if he has been exposed to the smell of normal adult males during a critical period in his life--the first 24 hours. In fact, an encounter with a single adult male was sufficient to make males exhibit dominance behavior when they reached adulthood. The researchers found that, intriguingly, it was not enough for young males to smell these pheromones--the pheromones had to be carried by active adult males. The effect was so strong that males carried on exhibiting courtship dominance behavior until they were five days old.

The authors of the study note that similar findings have been reported in mice and hamsters, suggesting that dominance behavior may often be affected by chemical signals. In future studies, the researchers hope to take the next step in understanding how dominance behavior develops and thereby to identify which parts of the fly’s brain are involved in processing dominance-inducing signals.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

More VideoLinks >>>