Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple genes permit closely related fish species to mix and match their color vision

11.10.2005


Vision, like other biological attributes, is shaped by evolution through environmental pressures and demands, and even closely-related species that are in other ways very similar might respond to their particular environments by interpreting the visual world slightly differently, using photoreceptors that are attuned to particular wavelengths of light. By studying a special group of closely-related fish species inhabiting the Great Lakes of Africa, researchers have uncovered clues to understanding how the components of color vision can undergo change over a relatively short period of evolutionary time.


Credit: Justin Marshall



The work is reported by James K. Bowmaker of University College London, Karen L. Carleton of the University of New Hampshire, and their colleagues.

Cichlid fish of the East African Rift Lakes are renowned for their diversity: Owing to migrations of ancestor species out of Lake Tanganyika and into other lakes, such as Lake Malawi, it has been estimated that hundreds of new cichlid species have arisen in these lakes in the last 100,000 years. Thanks to the relatively recent colonization by these fish of different ecological niches, as well as the prominent role of nuptual coloring in the mating preferences of these species, the cichlids offer a unique opportunity to study how color vision can undergo change in rapidly evolving species. For example, because color plays a significant role in mate choice, differences in color vision could greatly influence and even drive cichlid speciation.


In the new work, the researchers performed physiological and molecular genetic analyses of color vision in cichlid fish from Lake Malawi and demonstrated that differences in color vision between closely related species arise from individual species’ using different subsets of distinct visual pigments. The scientists showed that although an unexpectedly large group of these visual pigments are available to all the species, each expresses the pigments selectively, and in an individual way, resulting in differences in how the visual world is sensed.

The researchers identified a total of seven "cone" (color-sensing) visual pigments underlying color vision in these cichlids. They have measured the sensitivities of the cones to different wavelengths of light and isolated the seven genes that give rise to the pigment proteins. The seven cone types have maximum sensitivities ranging from the red end of the spectrum right through to the ultraviolet--light outside the range of human sensitivity. The researchers showed that in order to tune its color vision, each cichlid species primarily expresses three of the seven cone pigment genes encoded by their genomes.

It is not clear why such closely related cichlid species have evolved such different visual sensitivities, but the sensitivities most likely relate to such selective forces as foraging specializations and subtle differences in the underwater light environment. Evolutionary comparison of pigment genes suggests that other groups of fish may use a similar strategy for shaping their color vision.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>