Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple genes permit closely related fish species to mix and match their color vision

11.10.2005


Vision, like other biological attributes, is shaped by evolution through environmental pressures and demands, and even closely-related species that are in other ways very similar might respond to their particular environments by interpreting the visual world slightly differently, using photoreceptors that are attuned to particular wavelengths of light. By studying a special group of closely-related fish species inhabiting the Great Lakes of Africa, researchers have uncovered clues to understanding how the components of color vision can undergo change over a relatively short period of evolutionary time.


Credit: Justin Marshall



The work is reported by James K. Bowmaker of University College London, Karen L. Carleton of the University of New Hampshire, and their colleagues.

Cichlid fish of the East African Rift Lakes are renowned for their diversity: Owing to migrations of ancestor species out of Lake Tanganyika and into other lakes, such as Lake Malawi, it has been estimated that hundreds of new cichlid species have arisen in these lakes in the last 100,000 years. Thanks to the relatively recent colonization by these fish of different ecological niches, as well as the prominent role of nuptual coloring in the mating preferences of these species, the cichlids offer a unique opportunity to study how color vision can undergo change in rapidly evolving species. For example, because color plays a significant role in mate choice, differences in color vision could greatly influence and even drive cichlid speciation.


In the new work, the researchers performed physiological and molecular genetic analyses of color vision in cichlid fish from Lake Malawi and demonstrated that differences in color vision between closely related species arise from individual species’ using different subsets of distinct visual pigments. The scientists showed that although an unexpectedly large group of these visual pigments are available to all the species, each expresses the pigments selectively, and in an individual way, resulting in differences in how the visual world is sensed.

The researchers identified a total of seven "cone" (color-sensing) visual pigments underlying color vision in these cichlids. They have measured the sensitivities of the cones to different wavelengths of light and isolated the seven genes that give rise to the pigment proteins. The seven cone types have maximum sensitivities ranging from the red end of the spectrum right through to the ultraviolet--light outside the range of human sensitivity. The researchers showed that in order to tune its color vision, each cichlid species primarily expresses three of the seven cone pigment genes encoded by their genomes.

It is not clear why such closely related cichlid species have evolved such different visual sensitivities, but the sensitivities most likely relate to such selective forces as foraging specializations and subtle differences in the underwater light environment. Evolutionary comparison of pigment genes suggests that other groups of fish may use a similar strategy for shaping their color vision.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>