Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Multiple genes permit closely related fish species to mix and match their color vision


Vision, like other biological attributes, is shaped by evolution through environmental pressures and demands, and even closely-related species that are in other ways very similar might respond to their particular environments by interpreting the visual world slightly differently, using photoreceptors that are attuned to particular wavelengths of light. By studying a special group of closely-related fish species inhabiting the Great Lakes of Africa, researchers have uncovered clues to understanding how the components of color vision can undergo change over a relatively short period of evolutionary time.

Credit: Justin Marshall

The work is reported by James K. Bowmaker of University College London, Karen L. Carleton of the University of New Hampshire, and their colleagues.

Cichlid fish of the East African Rift Lakes are renowned for their diversity: Owing to migrations of ancestor species out of Lake Tanganyika and into other lakes, such as Lake Malawi, it has been estimated that hundreds of new cichlid species have arisen in these lakes in the last 100,000 years. Thanks to the relatively recent colonization by these fish of different ecological niches, as well as the prominent role of nuptual coloring in the mating preferences of these species, the cichlids offer a unique opportunity to study how color vision can undergo change in rapidly evolving species. For example, because color plays a significant role in mate choice, differences in color vision could greatly influence and even drive cichlid speciation.

In the new work, the researchers performed physiological and molecular genetic analyses of color vision in cichlid fish from Lake Malawi and demonstrated that differences in color vision between closely related species arise from individual species’ using different subsets of distinct visual pigments. The scientists showed that although an unexpectedly large group of these visual pigments are available to all the species, each expresses the pigments selectively, and in an individual way, resulting in differences in how the visual world is sensed.

The researchers identified a total of seven "cone" (color-sensing) visual pigments underlying color vision in these cichlids. They have measured the sensitivities of the cones to different wavelengths of light and isolated the seven genes that give rise to the pigment proteins. The seven cone types have maximum sensitivities ranging from the red end of the spectrum right through to the ultraviolet--light outside the range of human sensitivity. The researchers showed that in order to tune its color vision, each cichlid species primarily expresses three of the seven cone pigment genes encoded by their genomes.

It is not clear why such closely related cichlid species have evolved such different visual sensitivities, but the sensitivities most likely relate to such selective forces as foraging specializations and subtle differences in the underwater light environment. Evolutionary comparison of pigment genes suggests that other groups of fish may use a similar strategy for shaping their color vision.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>