Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism controlling DNA damage response has potential novel medical applications

10.10.2005


Production of p53 in response to DNA damage depends on proteins that bind to a control region of the messenger RNA that codes for this protein, according to St. Jude researchers



Investigators at St. Jude Children’s Research Hospital have discovered a previously unrecognized mechanism that controls a key protein linked to the cell’s response to stress - a finding that holds promise for new ways to enhance cancer therapies or protect cells from dying after exposure to damaging chemicals or radiation.

The gene for this protein, called p53, is the most commonly mutated gene in human cancer; and it plays a critical role in helping cells respond to stress, especially stresses that damage DNA, according to researchers.


Previously, the rise in the level of p53 in cells whose DNA had been damaged was thought to be due only to a decrease in the rate at which the p53 protein is broken down in the cell. The St. Jude study showed that the level of p53 protein synthesis increases following DNA damage. This discovery suggests that scientists can use this newly recognized mechanism to modulate p53 function in the cell in order to control whether cells in the body mutate, and whether cells live or die after DNA damage. A report on this work appears in the October 7 issue of the journal Cell.

If a cell has been damaged, p53 protects the body by either preventing that cell from dividing or triggering a cascade of molecular signals that causes that cell to commit suicide¡ªa process called apoptosis. In this way, p53 rids the body of useless cells and prevents cells with potentially cancer-causing mutations from multiplying and spreading. Failure of a cell to activate p53 function after DNA damage can contribute to the generation of genetically altered cells that leads to cancer.

The St. Jude team showed that the competing proteins, ribosomal protein L26 (RPL26) and nucleolin, vie for control of the messenger RNA (mRNA) that codes for p53. mRNA is the decoded form of a gene that acts like a blueprint that the cell’s protein-making machinery (ribosomes) use to make a specific protein. Researchers identified a region of the mRNA, called the 5¡ä-untranslated region (UTR) that serves as a control switch for this process. In undamaged cells, nucleolin binds to this region of p53 mRNA and suppresses synthesis. But after DNA damage, RPL26 binds to this region and increases the translation of the mRNA into the p53 protein.

If the researchers inhibited production of RPL26 in human cells that had been exposed to DNA damaging agents, like ionizing irradiation, the cells with damaged DNA failed to increase p53 protein, and thus failed to stop growing or failed to die as they should have. This demonstrated that RPL26 production is a critical player in the cell’s response to DNA damage. In contrast, when the researchers reduced the levels of nucleolin in cells, p53 production after DNA damage increased.

"Our findings suggest that RPL26 and nucleolin play critical roles in controlling the production of p53 and the response of the cell to ionizing radiation and other types of cellular stress," said Michael Kastan, M.D., Ph.D., director of the St. Jude Cancer Center and chair of hematology-oncology. "Now we would like to use these new insights to develop ways to modulate RPL26 or nucleolin in order to alter p53 function in cells of the body. The ability to increase p53 function in tumor cells could increase the effectiveness of radiation and chemotherapy in treating certain types of tumors."

"On the other hand, these insights provide a potentially novel way to try to decrease levels of p53 so that we could protect cells in normal tissues from dying after exposure to toxins or oxidative damage," he added. Kastan is senior author of the Cell paper.

The discovery of the roles of RPL26 and nucleolin in p53 production may have much broader implications than just the regulation of p53 levels in response to DNA damage, according to Kastan. Hypoxia (low levels of oxygen) and high doses of certain DNA-damaging agents inflict serious stress on cells, causing a general suppression of protein production, Kastan noted. In order to cope with such stress, cells must maintain adequate levels of certain proteins. Therefore, the cell must be able to activate specific mechanisms in response to stress, even when protein production as a whole is being suppressed. The binding of RPL26 to the 5¡äUTR appears to be an example of such a mechanism that bypasses the cell’s usual shut-down of protein synthesis during times of stress, Kastan said.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>