Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism controlling DNA damage response has potential novel medical applications

10.10.2005


Production of p53 in response to DNA damage depends on proteins that bind to a control region of the messenger RNA that codes for this protein, according to St. Jude researchers



Investigators at St. Jude Children’s Research Hospital have discovered a previously unrecognized mechanism that controls a key protein linked to the cell’s response to stress - a finding that holds promise for new ways to enhance cancer therapies or protect cells from dying after exposure to damaging chemicals or radiation.

The gene for this protein, called p53, is the most commonly mutated gene in human cancer; and it plays a critical role in helping cells respond to stress, especially stresses that damage DNA, according to researchers.


Previously, the rise in the level of p53 in cells whose DNA had been damaged was thought to be due only to a decrease in the rate at which the p53 protein is broken down in the cell. The St. Jude study showed that the level of p53 protein synthesis increases following DNA damage. This discovery suggests that scientists can use this newly recognized mechanism to modulate p53 function in the cell in order to control whether cells in the body mutate, and whether cells live or die after DNA damage. A report on this work appears in the October 7 issue of the journal Cell.

If a cell has been damaged, p53 protects the body by either preventing that cell from dividing or triggering a cascade of molecular signals that causes that cell to commit suicide¡ªa process called apoptosis. In this way, p53 rids the body of useless cells and prevents cells with potentially cancer-causing mutations from multiplying and spreading. Failure of a cell to activate p53 function after DNA damage can contribute to the generation of genetically altered cells that leads to cancer.

The St. Jude team showed that the competing proteins, ribosomal protein L26 (RPL26) and nucleolin, vie for control of the messenger RNA (mRNA) that codes for p53. mRNA is the decoded form of a gene that acts like a blueprint that the cell’s protein-making machinery (ribosomes) use to make a specific protein. Researchers identified a region of the mRNA, called the 5¡ä-untranslated region (UTR) that serves as a control switch for this process. In undamaged cells, nucleolin binds to this region of p53 mRNA and suppresses synthesis. But after DNA damage, RPL26 binds to this region and increases the translation of the mRNA into the p53 protein.

If the researchers inhibited production of RPL26 in human cells that had been exposed to DNA damaging agents, like ionizing irradiation, the cells with damaged DNA failed to increase p53 protein, and thus failed to stop growing or failed to die as they should have. This demonstrated that RPL26 production is a critical player in the cell’s response to DNA damage. In contrast, when the researchers reduced the levels of nucleolin in cells, p53 production after DNA damage increased.

"Our findings suggest that RPL26 and nucleolin play critical roles in controlling the production of p53 and the response of the cell to ionizing radiation and other types of cellular stress," said Michael Kastan, M.D., Ph.D., director of the St. Jude Cancer Center and chair of hematology-oncology. "Now we would like to use these new insights to develop ways to modulate RPL26 or nucleolin in order to alter p53 function in cells of the body. The ability to increase p53 function in tumor cells could increase the effectiveness of radiation and chemotherapy in treating certain types of tumors."

"On the other hand, these insights provide a potentially novel way to try to decrease levels of p53 so that we could protect cells in normal tissues from dying after exposure to toxins or oxidative damage," he added. Kastan is senior author of the Cell paper.

The discovery of the roles of RPL26 and nucleolin in p53 production may have much broader implications than just the regulation of p53 levels in response to DNA damage, according to Kastan. Hypoxia (low levels of oxygen) and high doses of certain DNA-damaging agents inflict serious stress on cells, causing a general suppression of protein production, Kastan noted. In order to cope with such stress, cells must maintain adequate levels of certain proteins. Therefore, the cell must be able to activate specific mechanisms in response to stress, even when protein production as a whole is being suppressed. The binding of RPL26 to the 5¡äUTR appears to be an example of such a mechanism that bypasses the cell’s usual shut-down of protein synthesis during times of stress, Kastan said.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>