Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tuberculosis infection prevention by quick testing

28.09.2005


With a new DNA test, tuberculosis infection can be revealed so quickly that a patient doesn’t have time to infect others. This can be an important key to effective control of the disease.



The Norwegian biotechnology firm Genpoint is running trials, along with others financed by the Norwegian Research Council’s biotechnology program, of new and effective DNA tests at Ullevål University Hospital, the country’s national laboratory for tuberculosis.

Norwegian health officials calculate that a person infected with tuberculosis, with today’s diagnosis methods, can infect on average 20 others before the disease is detected and the patient can be isolated and treated.


The current manual test methods take at least a week, and the bacteria must incubate for up to eight weeks before an precise diagnosis can be made. This is a comprehensive process for both the patient and the laboratories that perform the tests. In addition, the tests must often be taken several times over a period of up to six months before it is certain what type of tuberculosis bacteria is being dealt with.

Genpoint’s automated DNA method simplifies diagnostics and provides test results that are available in a few minutes at best and in a few hours at worst. Therefore health personnel are able to test much larger groups, gaining much better and more effective control of the disease and its transmission.

The test methods are approved in the sense that Genpoint is in the process of fulfilling the requirements for documentation that have been set by the hospital laboratory in close co-operation with experts in the hospital milieu.

-We expect to be finished with the documentation period late this autumn and that the tests in the best case can be available for ordinary use in the country’s laboratories from late autumn or early next year, explains Genpoint’s Administrative Director Geir Gogstad.

The new test methods will mean an enormous difference from the existing test when it comes to the authorities’ ability to treat tuberculosis patients.

-Many more can be tested using far less money than today, without an increase of personnel in the health care sector”, says Gogstad.

Magic spheres

Genpoint makes use of magic spheres to isolate bacteria and holds a world-wide patent for the process. The spheres pull bacteria to themselves, and then dissolve the bacteria so that the DNA is released and absorbed by the spheres. With further analysis of the DNA, the bacteria can be identified. Both the cells and the DNA are captured by the same sphere surface, making it much easier to automate the process.

Genpoint operates in the global market with its products. New forms of tuberculosis bacteria are constantly being discovered, or so called mycobacteria, which tuberculosis-related bacteria. Many of these are resistant to antibiotics. Therefore the job to find more effective and speedy methods to identify the disease and reduce infection are more important than ever before, even though the disease over the last 40 years has been held in check in northern Europe thanks to vaccination programmes.

In the next round, Genpoint plans to further develop its tests to include multi-resistant staphylococcus, which is a world-wide problem in hospitals, but has begun to manifest itself as a contagion outside of hospitals. In this case, a quick and reliable method for identifying the oganism and beginning treatment is even more crucial because the staphylococcus is very resistant to antibiotics.

Elisabeth Kirkeng Andersen | alfa
Further information:
http://www.genpoint.no

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>