Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain cancers: DNA chips improve diagnosis of gliomas

27.09.2005


Institut Curie and Inserm research scientists and physicians have just shown that precise knowledge of alterations in chromosome 1 can be used to improve the treatment of gliomas, the most frequent brain tumors in adults. Diagnosis and treatment of these tumors are difficult because of their heterogeneity and variable malignancy. Using DNA chips, the authors of this report were able to distinguish the tumors with the best prognosis, whose chromosome 1 has undergone a specific deletion. Screening for these deletions should be incorporated into standard diagnostic tests by the end of 2005.


When CGH chips light up… Each point represents a DNA probe of about 150 000 base pairs on which the sample DNA has hybridized. The green spots correspond to regions where a deletion has occurred, and the red spots to regions that have been amplified. © Ahmed Idbaih/Institut Curie



These results are published in the September 2005 issue of Annals of Neurology.

Gliomas are the most frequent brain tumors in adults, and account for over 50% of primary tumors. They are classified into three groups: astrocytomas – 70% of all these tumors – derive from astrocytes, cells close to the neurones; oligodendrogliomas derive from cells that produce the sheaths of nerve fibers; and oligoastrocytomas which are mixed tumors combining the characteristics of the first two types.


Gliomas are graded I to IV according to their malignancy. Grade 1 tumors are clinically benign and can be treated surgically. Grade II, III and IV tumors are increasingly malignant and require additional treatments (chemotherapy and/or radiotherapy).
Classification and grading of gliomas are essentially based on subtle microscopic characteristics and are therefore problematical. There is no specific marker or genetic signature, and the present classification seems inadequate in predicting the outcome of each type of glioma.

Chromosome 1 and the prognosis of gliomas

By studying the specific genetic alterations of a subgroup of more chemosensitive gliomas, their classification can be refined: the loss of the short arm(1) of chromosome 1 has thus been associated with a better prognosis and improved response to chemotherapy.
Jean-Yves Delattre(2) and his team at the Pitié-Salpêtrière Hospital and Olivier Delattre(3) and his team at the Institut Curie have identified several types of deletions of chromosome 1, only one of which is associated with gliomas with a good prognosis. These findings were recorded using array CGH analysis (see "Further information"), a technique that can establish high-resolution maps revealing genome anomalies (amplifications, deletions). Only the complete loss of the short arm of chromosome 1 combined with complete loss of the long arm of chromosome 19 signifies a good prognosis. Partial loss of the short arm of chromosome 1, on the other hand, characterizes more aggressive tumors. This retrospective study was done with samples from the tumor library of the Pitié-Salpêtrière Hospital using a technology developed at the Institut Curie.

In terms of fundamental research, these findings suggest that the genes involved in these two deletions, and hence associated with gliomas of good and poor prognosis, are different.

In clinical terms, the array CGH technique should improve the diagnosis of gliomas and hence their treatment. Screening for these chromosome 1 deletions should be incorporated into standard diagnostic tests by the end of 2005.

Genomics and notably DNA chips generate new information on the alterations underlying cancers. Using these tools, physicians can revamp and refine tumor classification to enable more individualized treatments.

Catherine Goupillon | alfa
Further information:
http://www.curie.fr

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>