Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain cancers: DNA chips improve diagnosis of gliomas

27.09.2005


Institut Curie and Inserm research scientists and physicians have just shown that precise knowledge of alterations in chromosome 1 can be used to improve the treatment of gliomas, the most frequent brain tumors in adults. Diagnosis and treatment of these tumors are difficult because of their heterogeneity and variable malignancy. Using DNA chips, the authors of this report were able to distinguish the tumors with the best prognosis, whose chromosome 1 has undergone a specific deletion. Screening for these deletions should be incorporated into standard diagnostic tests by the end of 2005.


When CGH chips light up… Each point represents a DNA probe of about 150 000 base pairs on which the sample DNA has hybridized. The green spots correspond to regions where a deletion has occurred, and the red spots to regions that have been amplified. © Ahmed Idbaih/Institut Curie



These results are published in the September 2005 issue of Annals of Neurology.

Gliomas are the most frequent brain tumors in adults, and account for over 50% of primary tumors. They are classified into three groups: astrocytomas – 70% of all these tumors – derive from astrocytes, cells close to the neurones; oligodendrogliomas derive from cells that produce the sheaths of nerve fibers; and oligoastrocytomas which are mixed tumors combining the characteristics of the first two types.


Gliomas are graded I to IV according to their malignancy. Grade 1 tumors are clinically benign and can be treated surgically. Grade II, III and IV tumors are increasingly malignant and require additional treatments (chemotherapy and/or radiotherapy).
Classification and grading of gliomas are essentially based on subtle microscopic characteristics and are therefore problematical. There is no specific marker or genetic signature, and the present classification seems inadequate in predicting the outcome of each type of glioma.

Chromosome 1 and the prognosis of gliomas

By studying the specific genetic alterations of a subgroup of more chemosensitive gliomas, their classification can be refined: the loss of the short arm(1) of chromosome 1 has thus been associated with a better prognosis and improved response to chemotherapy.
Jean-Yves Delattre(2) and his team at the Pitié-Salpêtrière Hospital and Olivier Delattre(3) and his team at the Institut Curie have identified several types of deletions of chromosome 1, only one of which is associated with gliomas with a good prognosis. These findings were recorded using array CGH analysis (see "Further information"), a technique that can establish high-resolution maps revealing genome anomalies (amplifications, deletions). Only the complete loss of the short arm of chromosome 1 combined with complete loss of the long arm of chromosome 19 signifies a good prognosis. Partial loss of the short arm of chromosome 1, on the other hand, characterizes more aggressive tumors. This retrospective study was done with samples from the tumor library of the Pitié-Salpêtrière Hospital using a technology developed at the Institut Curie.

In terms of fundamental research, these findings suggest that the genes involved in these two deletions, and hence associated with gliomas of good and poor prognosis, are different.

In clinical terms, the array CGH technique should improve the diagnosis of gliomas and hence their treatment. Screening for these chromosome 1 deletions should be incorporated into standard diagnostic tests by the end of 2005.

Genomics and notably DNA chips generate new information on the alterations underlying cancers. Using these tools, physicians can revamp and refine tumor classification to enable more individualized treatments.

Catherine Goupillon | alfa
Further information:
http://www.curie.fr

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>