Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defect in gene causes ’Neuralgic Amyotrophy’

26.09.2005


Neuralgic Amyotrophy is a painful disorder of the peripheral nervous system. This heritable disease causes prolonged acute attacks of pain in the shoulder or arm, followed by temporary paralysis. Researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to the University of Antwerp, have uncovered a small piece of the molecular puzzle of this disease by identifying the defects in the gene responsible for this disorder.



Neuralgic Amyotrophy, a painful disorder of the nervous system Hereditary Neuralgic Amyotrophy (HNA) is characterized by repeated attacks of pain in a shoulder, arm, and/or hand, followed by total or partial paralysis of the affected area. The pain and the loss of movement usually disappear within a couple of weeks, but sometimes recovery can take months or even several years. Many HNA patients also have particular facial features, such as eyes that are somewhat closer together, a fold in the upper eyelid that covers the inside corner of the eye, and sometimes a cleft palate.

HNA is a relatively rare disorder: the disease appears in some 200 families worldwide. There is also a non-hereditary form of HNA, called the Parsonage-Turner Syndrome. The clinical picture of this more frequently occurring form - 2 to 4 cases per 100,000 persons - is not distinguishable from that of the heritable form.


The attacks of pain are usually provoked by external factors such as vaccination, infection, operation, and even pregnancy or childbirth. By virtue of their genetic predisposition, carriers of the hereditary form of HNA run greater risk of having an attack. Its re-occurrence, and the fact that the disease is provoked by environmental factors, make this disorder unique in the group of peripheral nervous system disorders. Therefore, HNA is a genetic model for more frequently occurring disorders such as the Parsonage-Turner Syndrome and neurological disorders like Guillain-Barré Syndrome.

Genetic cause of HNA discovered

VIB researchers in Antwerp, under the direction of Vincent Timmerman and Peter De Jonghe, have discovered the genetic defect that underlies HNA. In this effort, the researchers, connected with the University of Antwerp, have been working with colleagues from the universities of Munster (Germany) and Seattle (USA).

The researchers studied several large families and identified the gene responsible for the disorder. They have now shown that HNA is linked to the long arm of chromosome 17, and they have found mutations or alterations in the genetic code of the Septin 9 protein in the patients being studied. HNA is the first mono-genetic disorder caused by a defect in a gene of the Septin family.

The researchers do not yet know exactly how Septin 9 functions in the peripheral nervous system or why mutations give rise to HNA. They do know that other members of the Septin family are involved in the cell division that forms the cytoskeleton and in the development of tumors. The fact that mutations in Septin 9 prevent cell division from occurring properly can perhaps explain why so many HNA patients also have facial abnormalities.

The first step toward treatment?

Today, no effective therapies yet exist to retard or prevent the progress of Neuralgic Amyotrophy. The current treatment is merely supportive. The findings of the researchers in Antwerp are a first essential step in the development of a specific treatment. Now that they know the gene involved, scientists can acquire more insight into the molecular processes of this disease, which may ultimately lead to a therapy.

VIB info | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>