Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M researchers identify new blood test for prostate cancer

22.09.2005


Test looks at 22 biomarkers; results more accurate than PSA



Researchers at the University of Michigan Comprehensive Cancer Center have identified a panel of 22 biomarkers that together provide a more accurate screening for prostate cancer than the current prostate specific antigen, or PSA, test. The study appears in the Sept. 22 issue of the New England Journal of Medicine.

Researchers looked at blood samples taken from 331 prostate cancer patients prior to surgery, and from 159 control males with no history of cancer. They began by testing the samples against a library of 2,300 bacteriophage, organisms that express proteins on their surface, and were able to narrow the field to the 22 biomarkers that most often pinpointed the cancerous blood samples.


More than 230,000 men will be diagnosed with prostate cancer this year. Current screening methods involve a blood test to check for prostate specific antigen, an enzyme produced by the prostate. But the PSA test is controversial. A high level does not always indicate prostate cancer and some experts suggest a rise in PSA is more significant than a consistently high PSA. A high PSA level can also indicate benign prostate conditions.

"Initially, we envision this new test could be used as a supplement to PSA. A physician might suggest a patient with an elevated PSA have this test before a biopsy to better determine whether it’s a cancerous or benign condition. In the future, I think this could replace PSA," says lead study author Arul Chinnaiyan, M.D., Ph.D., the S.P. Hicks Collegiate Professor of Pathology at the U-M Medical School.

In the current study, researchers first tested the blood serum samples of 39 men with prostate cancer and 21 controls to identify autoantibodies against prostate cancer. Cancer patients produce antibodies that fight against proteins that play a role in cancer. The researchers scanned 2,300 autoantibodies and initially narrowed it down to 186 that reacted with blood serum from the men with prostate cancer.

This discovery phase formed the basis for the next round of tests, in which 59 prostate cancer samples and 70 control samples were tested against the 186 autoantibodies. In this phase, the researcher identified a panel of 22 compounds that best distinguished the prostate cancer blood samples from the controls. Using these 22 markers, only two of 70 controls incorrectly tested positive for prostate cancer, and seven of 59 prostate cancer samples were falsely negative.

Next, the researchers validated their findings using the remaining 128 blood serum samples. They found eight of 68 controls and 11 of 60 prostate cancer samples were misclassified. This means 88 percent of the time, samples that were not cancerous were correctly identified and 81.6 percent of the time, samples that were cancerous tested positive.

"These 22 biomarkers appear to be the right number. If you used too many or too few, the accuracy went down a bit. Our findings held up when we tested the model on an independent set of blood serum samples," Chinnaiyan says.

The results proved to be more reliable at predicting cancer than prostate specific antigen, which is a single biomarker. PSA testing results in a false positive around 80 percent of the time, leading to unnecessary prostate biopsies. The normal range for the PSA test is less than 4.0 nanograms per milliliter (ng/mL) in most men. For men over 40 years old with a family history of prostate disease or for African-American men over 40 years old, some doctors suggest that a level higher than 2.5 ng/mL should be checked with more tests, because these two groups of men have an increased risk of prostate cancer.

The 22-biomarker test was reliable at identifying prostate cancer even in the PSA ranges of 4-10 ng/ml or 2.5-10 ng/ml, intermediate PSA scores that do not always suggest cancer. The study authors suggest the 22 biomarkers could be used for patients in this range to help determine whether to undergo a biopsy.

The new test requires only a routine blood draw for patients. Most blood-processing laboratories could easily be equipped to scan for these 22 biomarkers, Chinnaiyan says. Researchers are conducting further studies to validate the findings with a larger, community-based group of patients.

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu
http://www.cancer.med.umich.edu/learn/prostate.htm

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>