Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First link found between obesity, inflammation and vascular disease

19.09.2005


Researchers find human fat cells produce C-reactive protein



Researchers at The University of Texas M. D. Anderson Cancer Center and The University of Texas Health Science Center at Houston have found that human fat cells produce a protein that is linked to both inflammation and an increased risk of heart disease and stroke.
They say the discovery, reported in Journal of the American College of Cardiology, goes a long way to explain why people who are overweight generally have higher levels of the molecule, known as C-reactive protein (CRP), which is now used diagnostically to predict future cardiovascular events.

And they also report some good news: the researchers found that aspirin and statin drugs, now commonly used to treat heart diseases, effectively damp down production of CRP from fat cells.



"This study is the first to show how body fat participates in the inflammatory process that leads to cardiovascular disease, but also demonstrates that this process can be blocked by drugs now on the market," said study leader Edward T. H. Yeh, M.D., who is both chairman of the Department of Cardiology at M. D. Anderson and director of the Research Center for Cardiovascular Disease at the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases at the UT Health Science Center at Houston.

UT Health Science Center at Houston President James T. Willerson, M.D., is a co-author of the study.

Adipose tissue (body fat) has been lately regarded as a separate body organ which can produce a number of different biologically active molecules - such as cytokine proteins that are associated with inflammation, and the hormone resistin, which is linked to insulin resistance and the development of type two diabetes.

Even if they are healthy, people with more adipose tissue also tend to have higher levels of CRP. Previous research, however, had only found CRP to be produced in liver tissue, although Yeh, Willerson and Paolo Calabro, M.D., discovered in 2003 that the protein also is manufactured in the walls of blood vessels.

"But that didn’t explain obesity’s connection to high levels of CRP and it also was not clear why CRP is higher in patients who have metabolic disorders," Yeh said.

So the research team decided to see whether fat cells themselves can be stimulated by inflammatory cytokines or resistin to produce CRP. To help find out, plastic surgery patients at M. D. Anderson donated adipose tissue that would have been discarded, and the research team then isolated fat cells, cultured them and stimulated them under a number of different conditions. They found the cells produced cytokines that resulted in inflammation and that this process triggered production of high levels of C-reactive proteins.

The researchers also discovered that resistin, the hormone associated with diabetes and insulin resistance, can stimulate production of CRP proteins. "And this is interesting because it is known that resistin is itself produced by fat cells," Yeh said.

"We know that patients with metabolic syndromes have higher levels of CRPs, as well as a higher risk of developing heart disease and stroke, but no one understands why that is," Yeh said. "If fat cells by themselves produce inflammatory signals that trigger cells to produce CRPs, and if CRPs also produce biological effects on vascular walls, that could explain the higher risk of cardiovascular disease."

The investigators then solved the other part of the puzzle – why it is that aspirin, statin drugs and an agent known as troglitazone, used to treat diabetes, can reduce CRP levels. They exposed the cultured fat cells that were producing high levels of CRPs to these drugs, and found production of the proteins declined. "We knew from studying patients that these drugs can reduce C-reactive proteins, but now we have direct proof of their benefit."

Even as the CRP picture becomes clearer, there is still much that is not known, say the researchers, including the reason why fat tissue produces an inflammatory response, and just precisely how CRP participates in that process.

"Inflammation is a very complicated phenomenon, but at least we now have a few more clues as to what it does and how the damage it produces can be prevented," Yeh noted.

Scott Merville | EurekAlert!

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>