Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life’s origins were easier than was thought

16.09.2005


According to the most accepted theory on the origin of life, life began with very simple molecules, RNA chains, which were able to self-replicate. The problem with the theory, however, is that the fragility of these chains when there are replication errors (mutations) made it almost impossible for them to have evolved into more complex life forms. An international team of scientists, including Universitat Autònoma de Barcelona researchers, has discovered that these early molecules were much more resistant than was thought until now. According to the conclusions of the study, they may have developed enough to contain around 100 genes, which is considered to be the minimum quantity required for the most basic forms of primitive life, similar to the bacteria we have today. The research was published in the September edition of Nature Genetics.



In the primordial soup that produced life on earth, there were organic molecules that combined to produce the first nucleic acid chains, which were the first elements able to self-replicate. According to one of the more accepted theories, these molecules were ribonucleic acid (RNA) chains, a molecule that is practically identical to DNA and that today has the secondary role in cells of copying information stored in DNA and translating it into proteins.

These proteins have a direct active role in the chemical reactions of the cell. In the early stages of life, it seems that the first RNA chains would have had the dual role of self-replicating (as is today the case with DNA) and participating actively in the chemical reactions of the cell activity. Because of their dual role, these cells are called ribozymes (a contraction of the words ribosome and enzyme). But there is an important obstacle to the theory of ribozymes as the origin of life: they could not be very large in length as they would not be able to correct the replication errors (mutations). Therefore they were unable to contain enough genes even to develop the most simple organisms.


An investigation led by Mauro Santos, from the Department of Genetics and Microbiology at the Universitat Autònoma de Barcelona, alongside two Hungarian scientists, has shown that the error threshold, that is, the maximum number of errors that may occur during the replication process of ribozymes without this affecting its functioning, is higher than was previously calculated. In practice, this means that the first riboorganisms (protocells in which RNA is responsible for genetic information and metabolic reactions) could have a much bigger genome than was previously thought: they could contain more than 100 different genes, each measuring 70 bases in length (bases are the units that constitute the genes and codify the information), or more than 70 genes, each measuring 100 bases. It is worth remembering that tRNAs (essential molecules for the synthesis of proteins) are approximately 70 bases long.

The discovery has greatly relaxed the conditions necessary for the first living organisms to develop. “This quantity of genes would be enough for a simple organism to have enough functional activity”, according to the researchers. Recent analysis into the minimum number of DNA genes required to constitute bacteria, the most simple organism today, considers that around 200 genes is sufficient. But in riboorganisms there can be much fewer genes, since DNA genomes include a number of genes that have the role of making the RNA translation system (which enables proteins to be produced) work, which would not be required in RNA-based organism.

Octavi López Coronado | alfa
Further information:
http://www.uab.es/uabdivulga/eng
http://www.uab.es

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Magnesium magnificent for plasmonic applications

23.05.2018 | Materials Sciences

Tunable diamond string may hold key to quantum memory

23.05.2018 | Physics and Astronomy

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>