Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The (Cell) Matrix Reloaded

12.09.2005


A world-class research facility investigating diseases such as osteoarthritis, cardiovascular disease and cancer has been awarded a further £3 million to continue its groundbreaking work.



The University of Manchester’s Wellcome Trust Centre for Cell-Matrix Research has had its core grant renewed – securing infrastructure funding for the next five years.

The Centre, one of only five such Wellcome Trust-funded facilities in the UK and the only one in its field, is home to 21 independent research groups and a total of 170 scientists.


Established in 1995, the Centre is an interdisciplinary research hub whose long-term aims are to clarify the structure and function of extracellular matrices and cellular adhesion.

“The cell matrix is the material in the body in between the cells,” explained Professor Martin Humphries, Associate Dean for Research in the Faculty of Life Sciences and the Centre’s Director.

“Only two per cent of our body is made up of cells, the rest is the material that endows elastic tissue, bone tissue, ligaments and tendons with their physical and functional properties – that’s what we call the matrix.

“Our research aims to define the contribution of cell interactions with matrices to human diseases, and develop approaches for preventing and treating those diseases.

“For instance, there is currently enormous interest in developing ways to modify stem cells for treating joint diseases and brain diseases such as Alzheimer’s, but we believe it is critical to give those cells the right environment in which to live.

“Since cells are closely integrated with their surrounding matrix, when regenerating tissues it is logical to provide cells with the correct niche to help them develop in the right way. That’s where our research into the cell matrix comes in.”

“The work done here impinges on virtually all human diseases, although we have specific interests in cancer, vascular disease and osteoarthritis.

“In cancer, we are looking at the role adhesion plays in regulating tumour spread, while with osteoarthritis we are looking to replace damaged cartilage.

“The research where we’re closest to clinical trials, perhaps as soon as next year, is vascular engineering where we want to replace vessels affected by vascular disease.”

The Centre, which is based in the new, state-of-the-art Michael Smith Building, boasts one of the world’s best collection of scientists in this field; the grant, says Professor Humphries, will help facilitate their pioneering work for a further five years.

“Securing this core funding for a third time is a major accomplishment, and it will allow us to secure new equipment and to cover the salaries of key support staff,” he said.

“The core award helps provide the infrastructure necessary to carry out all of our specific project research. These projects are supported by £30 million worth of research grants, two-thirds of which are funded by the Wellcome Trust.”

Notizen für den Editor
The Wellcome Trust Centre for Cell-Matrix Research was established with an initial Wellcome Trust grant of £2.2 million. This was reviewed in 2000 when a further grant of £3.8 million was awarded. This latest £3.1 million grant is a result of a successful second review carried out on 12 May, 2005.

The Centre is part of the University’s Faculty of Life Sciences, one of the largest and most successful unified research and teaching organisations of its kind in Europe with more than 1,000 researchers, 1,500 undergraduate students and an annual budget of more than £100 million.

In January 2004, the Centre moved to the new Michael Smith Building, named after a former graduate of the University and 1993 Nobel Laureate in Chemistry. This building, which was funded in part by a £15 million JIF grant from the Wellcome Trust and the UK Government, provides outstanding laboratory accommodation for the Centre and facilitates access to a wide range of core equipment facilities, including mass spectrometry, X-ray crystallography and fluorescence microscopy. The Centre occupies about 25 per cent of the total floor space of the building.

There are currently 21 independent investigators within the Centre, with expertise ranging from structure determination to whole organism genetics, from molecular biophysics to molecular imaging in living cells. Currently, the Centre houses 170 researchers, including 50 postgraduate research students.

Research into osteoarthritis at the University can be traced back to 1953 with the appointment of Britain’s first professor of rheumatology, Jonas Kellgren.

The University of Manchester, created from the merger of The Victoria University of Manchester and UMIST in October 2004, is the UK’s largest university with 9,000 staff and 28,802 full-time-equivalent students and an annual income of almost £500 million.

For further information contact:

Aeron Haworth
Press Office
Faculty of Life Sciences
The University of Manchester

Tel: +44 (0)161 275 8383
Mob: +44 (0)7717 881 563
Email: aeron.haworth@manchester.ac.uk

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk/press/title,41223,en.htm

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>