Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The (Cell) Matrix Reloaded

12.09.2005


A world-class research facility investigating diseases such as osteoarthritis, cardiovascular disease and cancer has been awarded a further £3 million to continue its groundbreaking work.



The University of Manchester’s Wellcome Trust Centre for Cell-Matrix Research has had its core grant renewed – securing infrastructure funding for the next five years.

The Centre, one of only five such Wellcome Trust-funded facilities in the UK and the only one in its field, is home to 21 independent research groups and a total of 170 scientists.


Established in 1995, the Centre is an interdisciplinary research hub whose long-term aims are to clarify the structure and function of extracellular matrices and cellular adhesion.

“The cell matrix is the material in the body in between the cells,” explained Professor Martin Humphries, Associate Dean for Research in the Faculty of Life Sciences and the Centre’s Director.

“Only two per cent of our body is made up of cells, the rest is the material that endows elastic tissue, bone tissue, ligaments and tendons with their physical and functional properties – that’s what we call the matrix.

“Our research aims to define the contribution of cell interactions with matrices to human diseases, and develop approaches for preventing and treating those diseases.

“For instance, there is currently enormous interest in developing ways to modify stem cells for treating joint diseases and brain diseases such as Alzheimer’s, but we believe it is critical to give those cells the right environment in which to live.

“Since cells are closely integrated with their surrounding matrix, when regenerating tissues it is logical to provide cells with the correct niche to help them develop in the right way. That’s where our research into the cell matrix comes in.”

“The work done here impinges on virtually all human diseases, although we have specific interests in cancer, vascular disease and osteoarthritis.

“In cancer, we are looking at the role adhesion plays in regulating tumour spread, while with osteoarthritis we are looking to replace damaged cartilage.

“The research where we’re closest to clinical trials, perhaps as soon as next year, is vascular engineering where we want to replace vessels affected by vascular disease.”

The Centre, which is based in the new, state-of-the-art Michael Smith Building, boasts one of the world’s best collection of scientists in this field; the grant, says Professor Humphries, will help facilitate their pioneering work for a further five years.

“Securing this core funding for a third time is a major accomplishment, and it will allow us to secure new equipment and to cover the salaries of key support staff,” he said.

“The core award helps provide the infrastructure necessary to carry out all of our specific project research. These projects are supported by £30 million worth of research grants, two-thirds of which are funded by the Wellcome Trust.”

Notizen für den Editor
The Wellcome Trust Centre for Cell-Matrix Research was established with an initial Wellcome Trust grant of £2.2 million. This was reviewed in 2000 when a further grant of £3.8 million was awarded. This latest £3.1 million grant is a result of a successful second review carried out on 12 May, 2005.

The Centre is part of the University’s Faculty of Life Sciences, one of the largest and most successful unified research and teaching organisations of its kind in Europe with more than 1,000 researchers, 1,500 undergraduate students and an annual budget of more than £100 million.

In January 2004, the Centre moved to the new Michael Smith Building, named after a former graduate of the University and 1993 Nobel Laureate in Chemistry. This building, which was funded in part by a £15 million JIF grant from the Wellcome Trust and the UK Government, provides outstanding laboratory accommodation for the Centre and facilitates access to a wide range of core equipment facilities, including mass spectrometry, X-ray crystallography and fluorescence microscopy. The Centre occupies about 25 per cent of the total floor space of the building.

There are currently 21 independent investigators within the Centre, with expertise ranging from structure determination to whole organism genetics, from molecular biophysics to molecular imaging in living cells. Currently, the Centre houses 170 researchers, including 50 postgraduate research students.

Research into osteoarthritis at the University can be traced back to 1953 with the appointment of Britain’s first professor of rheumatology, Jonas Kellgren.

The University of Manchester, created from the merger of The Victoria University of Manchester and UMIST in October 2004, is the UK’s largest university with 9,000 staff and 28,802 full-time-equivalent students and an annual income of almost £500 million.

For further information contact:

Aeron Haworth
Press Office
Faculty of Life Sciences
The University of Manchester

Tel: +44 (0)161 275 8383
Mob: +44 (0)7717 881 563
Email: aeron.haworth@manchester.ac.uk

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk/press/title,41223,en.htm

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>