Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover key to human embryonic stem-cell potential


What exactly makes a stem cell a stem cell? The question may seem simplistic, but while we know a great deal of what stem cells can do, we don’t yet understand the molecular processes that afford them such unique attributes.

Now, researchers at Whitehead Institute for Biomedical Research working with human embryonic stem cells have uncovered the process responsible for the single-most tantalizing characteristic of these cells: their ability to become just about any type of cell in the body, a trait known as pluripotency.

"This is precisely what makes these stem cells so interesting from a therapeutic perspective," says Whitehead Member Richard Young, senior author on the paper which will be published September 8 in the early online edition of the journal Cell. "They are wired so they can become almost any part of the body. We’ve uncovered a key part of the wiring diagram for these cells and can now see how this is accomplished."

Once an embryo is a few days old, the stem cells start to differentiate into particular tissue types, and pluripotency is forever lost. But if stem cells are extracted, researches can keep them in this pluripotent state indefinitely, preserving them as a kind of cellular blank slate. The therapeutic goal then is to take these blank slates and coax them into, say, liver or brain tissue. But in order to guide them out of pluripotency with efficiency, we need to know what keeps them there to begin with.

Researchers in the Whitehead laboratories of Young, Rudolf Jaenisch, MIT-computer scientist David Gifford, and the Harvard lab of Douglas Melton focused on three proteins known to be essential for stem cells. These proteins, Oct4, Sox2, and Nanog, are called "transcription factors," proteins whose job is to regulate gene expression. (Transcription factors are really the genome’s primary movers, overseeing, coordinating, and controlling all gene activity.)

These proteins were known to play essential roles in maintaining stem cell identity--if they are disabled, the stem cell immediately begins to differentiate and is thus no longer a stem cell. "But we did not know how these proteins instructed stem cells to be pluripotent," says Laurie Boyer, first author on the paper and a postdoctoral scientist who divides her time between the Jaenisch and Young labs.

Using a microarray technology invented in the Young lab, Boyer and her colleagues analyzed the entire genome of a human embryonic stem cell and identified the genes regulated by these three transcription factors. The research team discovered that while these transcription factors activate certain genes essential for cell growth, they also repress a key set of genes needed for an embryo to develop.

This key set of repressed genes produce additional transcription factors that are responsible for activating entire networks of genes necessary for generating many different specialized cells and tissues. Thus, Oct4, Sox2, and Nanog are master regulators, silencing genes that are waiting to create the next generation of cells. When Oct4, Sox2, and Nanog are inactivated as the embryo begins to develop, these networks then come to life, and the stem cell ceases to be a stem cell.

The new work provides the first wiring diagram of human embryonic stem-cell regulatory circuitry. "This gives us a framework to further understand how human development is regulated," says Boyer.

"These findings provide the foundation for learning how to modify the circuitry of embryonic stem cells to repair damaged or diseased cells or to make cells for regenerative medicine," says Young. "They also establish the foundation for solving circuitry for all human cells."

David Cameron | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>