Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover key to human embryonic stem-cell potential

09.09.2005


What exactly makes a stem cell a stem cell? The question may seem simplistic, but while we know a great deal of what stem cells can do, we don’t yet understand the molecular processes that afford them such unique attributes.



Now, researchers at Whitehead Institute for Biomedical Research working with human embryonic stem cells have uncovered the process responsible for the single-most tantalizing characteristic of these cells: their ability to become just about any type of cell in the body, a trait known as pluripotency.

"This is precisely what makes these stem cells so interesting from a therapeutic perspective," says Whitehead Member Richard Young, senior author on the paper which will be published September 8 in the early online edition of the journal Cell. "They are wired so they can become almost any part of the body. We’ve uncovered a key part of the wiring diagram for these cells and can now see how this is accomplished."


Once an embryo is a few days old, the stem cells start to differentiate into particular tissue types, and pluripotency is forever lost. But if stem cells are extracted, researches can keep them in this pluripotent state indefinitely, preserving them as a kind of cellular blank slate. The therapeutic goal then is to take these blank slates and coax them into, say, liver or brain tissue. But in order to guide them out of pluripotency with efficiency, we need to know what keeps them there to begin with.

Researchers in the Whitehead laboratories of Young, Rudolf Jaenisch, MIT-computer scientist David Gifford, and the Harvard lab of Douglas Melton focused on three proteins known to be essential for stem cells. These proteins, Oct4, Sox2, and Nanog, are called "transcription factors," proteins whose job is to regulate gene expression. (Transcription factors are really the genome’s primary movers, overseeing, coordinating, and controlling all gene activity.)

These proteins were known to play essential roles in maintaining stem cell identity--if they are disabled, the stem cell immediately begins to differentiate and is thus no longer a stem cell. "But we did not know how these proteins instructed stem cells to be pluripotent," says Laurie Boyer, first author on the paper and a postdoctoral scientist who divides her time between the Jaenisch and Young labs.

Using a microarray technology invented in the Young lab, Boyer and her colleagues analyzed the entire genome of a human embryonic stem cell and identified the genes regulated by these three transcription factors. The research team discovered that while these transcription factors activate certain genes essential for cell growth, they also repress a key set of genes needed for an embryo to develop.

This key set of repressed genes produce additional transcription factors that are responsible for activating entire networks of genes necessary for generating many different specialized cells and tissues. Thus, Oct4, Sox2, and Nanog are master regulators, silencing genes that are waiting to create the next generation of cells. When Oct4, Sox2, and Nanog are inactivated as the embryo begins to develop, these networks then come to life, and the stem cell ceases to be a stem cell.

The new work provides the first wiring diagram of human embryonic stem-cell regulatory circuitry. "This gives us a framework to further understand how human development is regulated," says Boyer.

"These findings provide the foundation for learning how to modify the circuitry of embryonic stem cells to repair damaged or diseased cells or to make cells for regenerative medicine," says Young. "They also establish the foundation for solving circuitry for all human cells."

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>