Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop screening test for cells that activate immune system

07.09.2005


UT Southwestern Medical Center researchers are the first to create a large-scale, cell-based screening method that identifies which compounds activate immune-response cells that hold promise for future cancer-fighting vaccines.



The new screening technique can scan thousands and even millions of compounds to identify those that activate dendritic cells, which are on constant recon patrol throughout the body to scout out cancerous or infected cells and alert the immune system.

"Our assay is unique from other conventional ones in its sensitivity and cost- and time-efficiency," said Dr. Akira Takashima, professor of dermatology and vice chairman for research and head of the project.


Dendritic cells (DCs) are considered key to developing future vaccines that can either mimic the body’s natural immune response or turn on immune responses that failed - due, for example, to cancer or an immune deficiency.

The team, which also included Dr. Norikatsu Mitzumoto, assistant professor of dermatology and the study’s lead author, and Drs. Hironori Matsushima and Hiroaki Tanaka, postdoctoral researchers in dermatology, created the cell-based biosensor system.

"We basically engineered DCs to express a fluorescent signal only when sensing activation signals so that you can identify immuno-stimulatory agents very easily," said Dr. Takashima. Immuno-stimulatory agents launch the immune system.

The research appears on Blood magazine’s online Web site and will appear in a future issue.

"We have optimized the high-throughput screening capability - an experienced scientist can now test one thousand chemicals a day almost single-handedly," added Dr. Mizumoto. Previously, scientists would have to test each compound individually, a time-consuming process.

Their research already has led to the discovery of several compounds that turn on dendritic cells, which are found throughout the body from skin to blood. They continuously scan the body at the cellular level looking for antigens - foreign cells and materials invading the body - and for molecular signatures of tissue damage or infection.

"Their primary job is to present antigens to the immune system so that you develop protective immunity for infection and cancer," said Dr. Takashima.

The DC biosensor system should help pharmaceutical and biotech companies sift through large numbers of chemicals for ones that tell the dendritic cells to launch the immune response. It may also prove useful in identifying biothreat agents because it detects infectious pathogens with high sensitivity.

Dr. Takashima said he hopes to garner additional funding to discover potent immuno-stimulatory drugs by screening high-quality libraries of compounds.

Doing so may be the first step toward developing a new class of vaccines that force or trick the natural immune system to kick on, or initiate an immune response that can be copied and initiated artificially.

Other UT Southwestern researchers from dermatology involved in the study were Dr. Yasushi Ogawa, postdoctoral researcher, and Dr. Jimin Gao, former instructor.

The research was funded by the National Institutes of Health, the Dermatology Foundation Career Development Award and the American Cancer Society Junior Investigator Award.

Russell Rian | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>