Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop screening test for cells that activate immune system

07.09.2005


UT Southwestern Medical Center researchers are the first to create a large-scale, cell-based screening method that identifies which compounds activate immune-response cells that hold promise for future cancer-fighting vaccines.



The new screening technique can scan thousands and even millions of compounds to identify those that activate dendritic cells, which are on constant recon patrol throughout the body to scout out cancerous or infected cells and alert the immune system.

"Our assay is unique from other conventional ones in its sensitivity and cost- and time-efficiency," said Dr. Akira Takashima, professor of dermatology and vice chairman for research and head of the project.


Dendritic cells (DCs) are considered key to developing future vaccines that can either mimic the body’s natural immune response or turn on immune responses that failed - due, for example, to cancer or an immune deficiency.

The team, which also included Dr. Norikatsu Mitzumoto, assistant professor of dermatology and the study’s lead author, and Drs. Hironori Matsushima and Hiroaki Tanaka, postdoctoral researchers in dermatology, created the cell-based biosensor system.

"We basically engineered DCs to express a fluorescent signal only when sensing activation signals so that you can identify immuno-stimulatory agents very easily," said Dr. Takashima. Immuno-stimulatory agents launch the immune system.

The research appears on Blood magazine’s online Web site and will appear in a future issue.

"We have optimized the high-throughput screening capability - an experienced scientist can now test one thousand chemicals a day almost single-handedly," added Dr. Mizumoto. Previously, scientists would have to test each compound individually, a time-consuming process.

Their research already has led to the discovery of several compounds that turn on dendritic cells, which are found throughout the body from skin to blood. They continuously scan the body at the cellular level looking for antigens - foreign cells and materials invading the body - and for molecular signatures of tissue damage or infection.

"Their primary job is to present antigens to the immune system so that you develop protective immunity for infection and cancer," said Dr. Takashima.

The DC biosensor system should help pharmaceutical and biotech companies sift through large numbers of chemicals for ones that tell the dendritic cells to launch the immune response. It may also prove useful in identifying biothreat agents because it detects infectious pathogens with high sensitivity.

Dr. Takashima said he hopes to garner additional funding to discover potent immuno-stimulatory drugs by screening high-quality libraries of compounds.

Doing so may be the first step toward developing a new class of vaccines that force or trick the natural immune system to kick on, or initiate an immune response that can be copied and initiated artificially.

Other UT Southwestern researchers from dermatology involved in the study were Dr. Yasushi Ogawa, postdoctoral researcher, and Dr. Jimin Gao, former instructor.

The research was funded by the National Institutes of Health, the Dermatology Foundation Career Development Award and the American Cancer Society Junior Investigator Award.

Russell Rian | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>