Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animal model of Parkinson’s disease reveals striking sensitivity to common environmental toxins

07.09.2005


In findings that support a relationship between agricultural chemicals and Parkinson’s disease, two groups of researchers have found new evidence that loss of DJ-1, a gene known to be linked to inherited Parkinson’s disease, leads to striking sensitivity to the herbicide paraquat and the insecticide rotenone. The two studies were performed with the fruit fly Drosophila, a widely used model organism for studies of human disease, and shed new light on biological connections between inherited and sporadic forms of Parkinson’s disease.



The work is reported in Current Biology by two independent groups, one led by Nancy Bonini of the University of Pennsylvania and the Howard Hughes Medical Institute, and the other led by Kyung-Tai Min of the NINDS branch of the U.S. National Institutes of Health.

Parkinson’s disease occurs both sporadically and as a result of inheritance of single gene mutations. One of the most common neurodegenerative disorders, it is associated with the progressive and selective loss of a specific population of neurons in the brain, the dopaminergic neurons of the substantia nigra pars compacta . Exposure to several common environmental toxins, thought to injure neurons through oxidative damage, has been shown to be associated with sporadic forms of Parkinson’s disease. During the past decade, researchers have also made remarkable progress in identifying genes responsible for inherited forms of Parkinson’s disease, with the expectation that understanding the function of these genes will elucidate mechanisms behind sporadic Parkinson’s disease. Past work had shown that one form of familial Parkinson’s disease results from a loss of function of a gene called DJ-1.


The fruit fly possesses two versions of the DJ-1 gene, and in the new work, the researchers simulated the human Parkinson’s disease situation by deleting one or both forms of DJ-1 from the fly’s DNA.

Bonini and colleagues showed that flies lacking both forms of DJ-1 activity are normal under standard conditions. However, upon exposure to widely used agricultural agents, including paraquat and rotenone, previously associated with the sporadic form of Parkinson’s disease, the flies show strikingly increased sensitivity and death. These findings suggest that loss of DJ-1 function leads to an increased sensitivity to chemical agents that cause oxidative damage.

Min and his colleagues found that loss of function of one form of fly DJ-1, DJ-1b, caused a compensatory boost in expression of the other form of the gene, DJ-1a. These flies, lacking DJ-1â function but having increased DJ-1á activity, showed extended survival of dopaminergic neurons and resistance to oxidative stress caused by the chemical paraquat, but at the same time they also exhibited acute sensitivity to hydrogen peroxide treatment. The results showed that overexpression of DJ-1a in dopaminergic neurons is sufficient to confer protection against paraquat insult.

Together, the results from the two studies suggest that Drosophila DJ-1 genes, and potentially human DJ-1, play critical roles in the survival of dopaminergic neurons and the response to oxidative cellular stress. In addition, the studies also highlight DJ-1 as a potential therapeutic target for the treatment of Parkinson’s disease.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>