Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-machines achieve huge mechanical breakthrough

07.09.2005


A major advance in nanotechnology with far-reaching potential benefits in medicine and other fields is to be announced at this year’s BA Festival of Science in Dublin.



Scientists have built molecules that can, for the first time ever, move larger-than-atom-sized objects. Constructing molecular machines capable of performing relatively large-scale mechanical tasks has never been achieved before.

Now, in an unprecedented breakthrough, chemists at Edinburgh University have used light to stimulate man-made molecules to propel small droplets of liquid across flat surfaces and even up 12° slopes against the force of gravity. This is equivalent to tiny movements in a conventional machine raising objects to over twice the height of the world’s tallest building.


This significant step could eventually lead to the development of artificial muscles that use molecular ‘nano’-machines of this kind to help perform physical tasks. Nano-machines could also be used in ‘smart’ materials that change their properties (e.g. volume, viscosity, conductivity) in response to a stimulus. They could even control the movement of drugs around the body to the exact point where they are needed.

The research has been funded by the Engineering and Physical Sciences Research Council (EPSRC), and has also involved scientists in Italy and the Netherlands. David Leigh, Forbes Professor of Organic Chemistry and EPSRC Senior Research Fellow, leads the Edinburgh University team.

David Leigh and his colleagues have achieved their breakthrough by harnessing a natural biological mechanism called ‘Brownian motion’ (the random movement of molecules caused by collisions with molecules around them). This has involved controlling (or ‘biasing’) Brownian motion so that molecule movements are no longer completely random.

The team has developed a way of covering a gold surface with specially engineered molecules. When stimulated by ultra-violet light, the components of these molecules change position (this is because a chemical reaction takes place in one part of the molecule that causes it to repel another part). These changes in position dramatically alter the surface tension of a droplet of liquid placed on the gold surface and in this way produce enough energy to move the droplet a distance of up to a millimetre. It may be the tiniest of movements but in the emerging discipline of nanotechnology this represents a giant technological leap forward.

David Leigh says: “Nature uses molecules as motors and machines in all kinds of biological and chemical processes. Although man’s understanding of how to build and control molecular machines is still at an early stage, nanoscale science and engineering could have a life-enhancing impact on human society comparable in extent to that of electricity, the steam engine, the transistor and the Internet.”

David Leigh will be discussing his work and showing videos of droplet movement during his talk at the Festival on 7th September. A detailed report has also been published in the latest edition of Nature Materials (‘Nanoshuttles move droplets uphill’; Vol. 4, pp.704-710, 2005).

Ronald Kerr | alfa
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>