Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-machines achieve huge mechanical breakthrough

07.09.2005


A major advance in nanotechnology with far-reaching potential benefits in medicine and other fields is to be announced at this year’s BA Festival of Science in Dublin.



Scientists have built molecules that can, for the first time ever, move larger-than-atom-sized objects. Constructing molecular machines capable of performing relatively large-scale mechanical tasks has never been achieved before.

Now, in an unprecedented breakthrough, chemists at Edinburgh University have used light to stimulate man-made molecules to propel small droplets of liquid across flat surfaces and even up 12° slopes against the force of gravity. This is equivalent to tiny movements in a conventional machine raising objects to over twice the height of the world’s tallest building.


This significant step could eventually lead to the development of artificial muscles that use molecular ‘nano’-machines of this kind to help perform physical tasks. Nano-machines could also be used in ‘smart’ materials that change their properties (e.g. volume, viscosity, conductivity) in response to a stimulus. They could even control the movement of drugs around the body to the exact point where they are needed.

The research has been funded by the Engineering and Physical Sciences Research Council (EPSRC), and has also involved scientists in Italy and the Netherlands. David Leigh, Forbes Professor of Organic Chemistry and EPSRC Senior Research Fellow, leads the Edinburgh University team.

David Leigh and his colleagues have achieved their breakthrough by harnessing a natural biological mechanism called ‘Brownian motion’ (the random movement of molecules caused by collisions with molecules around them). This has involved controlling (or ‘biasing’) Brownian motion so that molecule movements are no longer completely random.

The team has developed a way of covering a gold surface with specially engineered molecules. When stimulated by ultra-violet light, the components of these molecules change position (this is because a chemical reaction takes place in one part of the molecule that causes it to repel another part). These changes in position dramatically alter the surface tension of a droplet of liquid placed on the gold surface and in this way produce enough energy to move the droplet a distance of up to a millimetre. It may be the tiniest of movements but in the emerging discipline of nanotechnology this represents a giant technological leap forward.

David Leigh says: “Nature uses molecules as motors and machines in all kinds of biological and chemical processes. Although man’s understanding of how to build and control molecular machines is still at an early stage, nanoscale science and engineering could have a life-enhancing impact on human society comparable in extent to that of electricity, the steam engine, the transistor and the Internet.”

David Leigh will be discussing his work and showing videos of droplet movement during his talk at the Festival on 7th September. A detailed report has also been published in the latest edition of Nature Materials (‘Nanoshuttles move droplets uphill’; Vol. 4, pp.704-710, 2005).

Ronald Kerr | alfa
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>