Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New way to assess risk of breast cancer recurrence developed at Stanford

06.09.2005


Currently, the best way to predict whether a breast cancer is likely to recur is to determine whether tumor cells have invaded the lymph nodes near the breast. But new research from the Stanford University School of Medicine suggests that looking at the immune cells in those lymph nodes - instead of the tumor cells - will yield a more accurate forecast. The finding could help clinicians determine which cancers to treat more aggressively to ensure the cancer goes away and doesn’t come back.



"Immune changes in the lymph node almost perfectly predict clinical outcome, much better than any other prognostic factor that is available today," said Peter P. Lee, MD, assistant professor of medicine and the senior author of the paper detailing the findings in the Sept. 6 advance online edition of Public Library of Science-Medicine.

In samples of breast cancer patients’ lymph nodes, Lee and his colleagues identified unique patterns of immune cells. When the researchers compared the immune profiles to whether a patient’s cancer returned within five years, they could divide the patients into two groups. The group with what Lee termed a "favorable" immune profile had an 85 to 90 percent chance of being disease-free after five years. The group with an "unfavorable" immune profile had less than a 15 percent chance.


The predictions could be made solely based on the immune cells, regardless of whether a lymph node contained tumor cells.

The origins of the study can be traced to about three years ago, when Lee began to question why the lymph node’s immune cells didn’t react to and destroy the invading tumor cells. He reasoned that tumor cells must do something to suppress the immune cells in the node. He wanted to see if he could identify changes in the immune cells in the lymph nodes of women who had breast cancer. If so, he wondered if it could predict how the women fared years later.

Lee enlisted Holbrook Kohrt, MD, a resident in internal medicine, to scour the Stanford pathology bank, looking for preserved samples of lymph nodes. They obtained lymph node tissue samples from 77 breast cancer patients taken more than five years ago. All of these patients had had cancer that migrated out of the breast. Each also had five-year follow-up information.

Using specific antibodies, they looked for three major types of immune cells: cytotoxic T cells, helper T cells and dendritic cells as well as tumor cells. Using an automated imaging system, they collected up to 4,000 images per lymph node, allowing them to count cells from the entire lymph node. Previous studies have relied on fewer than 20 images.

Lymph nodes that were invaded by tumor cells showed dramatic decreases in helper T cells and dendritic cells. They also had fewer cytotoxic T cells.

"That finding was interesting, but somewhat intuitive," said Lee. He said it is logical to think that with tumor cells accounting for up to 80 percent of the cells in an invaded lymph node, there are bound to be some perturbations in immune cell populations.

"Then we found something more interesting and puzzling," he said. Some of the nodes were only minimally invaded by tumor cells-in some cases fewer than 10 tumor cells or even without a single tumor cell to be found. These lymph nodes also showed similar immune changes as nodes full of tumor cells. Statistician Susan Holmes, PhD, rigorously analyzed the data and found that strikingly, immune changes within these lymph nodes predicted clinical outcome even better than their tumor invasion status.

In other words, the numbers of immune cells alone seemed to predict whether a woman’s cancer returned within five years. In the study, 33 of the 77 patients had their cancer return.

"It was a surprise to find immune changes in lymph nodes with no detectable tumor cells," said Lee. He added that their data support an intriguing theory: Perhaps tumor cells prepare the lymph node for invasion. "Even before it actually invades the node, it actually causes the node to change," he said. It might be a more sensitive and earlier method of detecting metastasis, or tumor spread, than actually seeing the migrated tumor cells themselves.

Such information could help determine which women could benefit from more aggressive therapy, and which could be spared undergoing costly and toxic treatments unnecessarily.

"The nice thing about this technique is that it could be applied to all women with breast cancer," said Kohrt, the lead author of the paper. "It’s awesome that such a simple idea could affect more than 200,000 patients a year."

Lee envisions a simple clinical tool based on their discovery: it entails staining a lymph node biopsy for immune cells rather than for tumor cells. The researchers emphasize that their findings will have to be confirmed with larger numbers of breast cancer patients, in those with less advanced disease and with fresh samples rather than frozen.

From the broader perspective of cancer biology in general, the group’s findings underscore the importance of immune response in determining the spread of breast cancer. A better understanding of these mechanisms may lead to novel treatment strategies for breast cancer specifically directed at modulating the immune responses within lymph nodes.

"This is a shot in the arm for the field," said Kohrt. "The immunology of breast cancer has not been very well explored yet, and these findings argue that the immune system is more important in cancer than previously thought."

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>