Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where bonehead investments come from

01.09.2005


The ups and downs of the stock market reflect investors’ balance between greed and fear, goes an old saying. Until now, though, economists have not had a way to incorporate such emotions into their models of investors’ strategies. However, in the September 1, 2005, issue of Neuron, Camelia M. Kuhnen and Brian Knutson of Stanford University report the identification of two key brain regions activated before people make risk-seeking versus risk-aversion investment mistakes.
They said that their findings may help to "ultimately improve the design of economic institutions so as to facilitate optimal investor behavior." They also said they believe their experimental design--which they call the "Behavioral Investment Allocation Strategy"--enables researchers to bring the real-life equivalent of individual investment behavior into the laboratory.

In their experiments, the researchers asked volunteers to make investment decisions among two stocks and a bond by pressing buttons. Before each trial run, the researchers "showed them the money," telling the subjects that they would receive a percentage of the cash that they made by investing or would lose cash from their participation fee if they were not successful. Without telling the subjects, the researchers randomly designated one of the stocks a "bad" stock more likely to lose money or as a "good" stock that was more likely to make money. The bond was a safe but conservative investment.


The researchers then scanned the subjects’ brains using functional magnetic resonance imaging (fMRI) as they proceeded through a series of decisions on investing in the pairs of the stocks or with the bond and learned the outcomes of those decisions. The commonly used technique of fMRI utilizes harmless magnetic fields and radio signals to map detailed blood flow in brain regions, which reflects activity.

The researchers’ analyses of the subjects’ choices and brain activity revealed that an area called the nucleus accumbens (NAcc) tended to distinctively activate before the researchers made investing mistakes that were "risk seeking." That is, they decided to invest in a stock whose history had shown it to be "bad."

Conversely, found the researchers, the brain area called the anterior insula activated before the subjects made "risk-averse" mistakes--for example, investing in the bond when they had an opportunity to invest in a "good" stock.

The researchers wrote that their results "indicate that, above and beyond contributing to rational choice, anticipatory neural activation may also promote irrational choice. Thus, financial decision making may require a delicate balance--recruitment of distinct circuits may be necessary for taking or avoiding risks, but excessive activation of one mechanism or the other may lead to mistakes."

Kuhnen and Knutson concluded that "Overall, these findings suggest that risk-seeking choices (such as gambling at a casino) and risk-averse choices (such as buying insurance) may be driven by two distinct neural circuits involving the NAcc and the anterior insula. The findings are consistent with the notion that activation in the NAcc and anterior insula, respectively, index positive and negative anticipatory affective states and that activating one of these two regions can lead to a shift in risk preferences. This may explain why casinos surround their guests with reward cues (e.g., inexpensive food, free liquor, surprise gifts, potential jackpot prizes)--anticipation of rewards activates the NAcc, which may lead to an increase in the likelihood of individuals switching from risk-averse to risk-seeking behavior. A similar story in reverse may apply to the marketing strategies employed by insurance companies," they wrote.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>