Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Greener’ stain-resistant coatings developed; avoid PFOA

30.08.2005


When it comes to fighting stains, "greener" is better. Chemists at the University of North Carolina at Chapel Hill say they have developed an alternative material for making stain-resistant coatings that does not lead to the contamination of the environment with PFOA, a pervasive chemical that has been termed a "likely carcinogen" by an EPA advisory board.



PFOA (perfluorooctanoic acid) is used directly in the manufacture of the coatings used in nonstick cookware and is also produced by the gradual breakdown in the environment of stain-resistant coatings on clothing and paper goods. Both materials, which have similar properties, are manufactured under a variety of brand names. A growing number of researchers believe that fabric-based, stain-resistant coatings, which are ubiquitous, may be the largest environmental source of the controversial chemical.

The new materials use a novel type of short-chain fluorocarbon that does not degrade into PFOA and is less likely to cause health effects, the UNC scientists say. The greener compounds are primarily intended to replace conventional stain-resistant coatings that are now used in clothing and packaging that eventually degrade into PFOA, they say. The compounds are not designed to replace the coatings used in nonstick cookware that are manufactured using PFOA, the researchers point out. Their finding was described today at the 230th national meeting of the American Chemical Society, the world’s largest scientific society.


"These new compounds can go a long way toward reducing PFOA in the environment while still providing the convenience of stain-repellant coatings," says study leader Joseph M. DeSimone, Ph.D., a chemistry professor at UNC and director of the National Science Foundation (NSF) Science and Technology Center for Environmentally Responsible Solvents and Processes. "That’s good news, because once PFOA gets in the environment and in the body, it tends to stay there."

An estimated 95 percent of people in the United States have the chemical in their blood, according to the Centers for Disease Control and Prevention (CDC). But scientists are not sure how the chemical is getting into the body and have limited information on its long-term health effects.

PFOA, also known as C8, is a man-made chemical that has been used for almost 40 years in a variety of commercial applications. The compound is used in the manufacture of fluoropolymers, which are used to make nonstick materials that are used in some cookware, according to the researchers. The compounds are not present in the nonstick coating itself, they add.

PFOA is also produced indirectly through the gradual breakdown of fluorotelomers, compounds that are used to provide water, stain and grease resistance to many fabric and paper goods, such as clothing and food packaging. Because stain-resistant coatings are so widely used, many researchers believe that these coatings may be a larger source of PFOAs than the manufacture of nonstick materials, DeSimone says.

Fluorotelomers are long-chain (eight carbon) compounds that tend to form a protective layer on fabrics and paper goods that are coated with the compounds. Over time, oxidation can cause the fluorotelomers to degrade to PFOA, which is difficult to break down due to its durability and bond strength. PFOA also has a tendency to accumulate in cells due to its polarized structure, which has both hydrophobic (water-repelling) and hydrophilic (water-loving) parts, similar to the cell membrane, the researchers say.

DeSimone and his associates, Paul Resnick, Ph.D., and graduate student Ji Guo, designed a group of shorter, four-carbon fluorotelomers, called "C4 plus" that are less bulky than the longer chain fluorotelomers. The newer compounds do not produce PFOA and do not appear to be capable of accumulating in the body upon oxidation. In early laboratory tests, coatings made with the new C4 plus compounds performed as well as or better than the conventional coatings, the researchers say.

The researchers have filed a patent for these new materials, which they say have the same beneficial properties as conventional coatings and can easily be scaled up to industrial standards. Several textile companies have expressed an interest, DeSimone says. His study is funded by NSF.

The finding represents another environmental achievement for DeSimone’s research group. Several years ago, the researchers found a way to manufacture many different fluoropolymers in supercritical carbon dioxide that avoids the use of PFOA. DeSimone received a Presidential Green Chemistry Challenge Award in 1997 for developing this process. Like C4 plus, this process also shows great potential for reducing PFOA in the environment, particularly in the manufacture of nonstick coatings used in cookware, the researcher says.

"The high quality of Joe DeSimone’s science is well-established as a Presidential Green Chemistry Challenge Award winner," says Paul Anastas, Ph.D., director of the ACS Green Chemistry Institute. "It takes that high-quality science to address one of the great chemistry challenges of our time: designing our molecules so that they do not persist and bioaccumulate in humans and in the environment."

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 158,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Charmayne Marsh | EurekAlert!
Further information:
http://www.chemistry.org/portal/a/c/s/1/home.html

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>