Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Greener’ stain-resistant coatings developed; avoid PFOA

30.08.2005


When it comes to fighting stains, "greener" is better. Chemists at the University of North Carolina at Chapel Hill say they have developed an alternative material for making stain-resistant coatings that does not lead to the contamination of the environment with PFOA, a pervasive chemical that has been termed a "likely carcinogen" by an EPA advisory board.



PFOA (perfluorooctanoic acid) is used directly in the manufacture of the coatings used in nonstick cookware and is also produced by the gradual breakdown in the environment of stain-resistant coatings on clothing and paper goods. Both materials, which have similar properties, are manufactured under a variety of brand names. A growing number of researchers believe that fabric-based, stain-resistant coatings, which are ubiquitous, may be the largest environmental source of the controversial chemical.

The new materials use a novel type of short-chain fluorocarbon that does not degrade into PFOA and is less likely to cause health effects, the UNC scientists say. The greener compounds are primarily intended to replace conventional stain-resistant coatings that are now used in clothing and packaging that eventually degrade into PFOA, they say. The compounds are not designed to replace the coatings used in nonstick cookware that are manufactured using PFOA, the researchers point out. Their finding was described today at the 230th national meeting of the American Chemical Society, the world’s largest scientific society.


"These new compounds can go a long way toward reducing PFOA in the environment while still providing the convenience of stain-repellant coatings," says study leader Joseph M. DeSimone, Ph.D., a chemistry professor at UNC and director of the National Science Foundation (NSF) Science and Technology Center for Environmentally Responsible Solvents and Processes. "That’s good news, because once PFOA gets in the environment and in the body, it tends to stay there."

An estimated 95 percent of people in the United States have the chemical in their blood, according to the Centers for Disease Control and Prevention (CDC). But scientists are not sure how the chemical is getting into the body and have limited information on its long-term health effects.

PFOA, also known as C8, is a man-made chemical that has been used for almost 40 years in a variety of commercial applications. The compound is used in the manufacture of fluoropolymers, which are used to make nonstick materials that are used in some cookware, according to the researchers. The compounds are not present in the nonstick coating itself, they add.

PFOA is also produced indirectly through the gradual breakdown of fluorotelomers, compounds that are used to provide water, stain and grease resistance to many fabric and paper goods, such as clothing and food packaging. Because stain-resistant coatings are so widely used, many researchers believe that these coatings may be a larger source of PFOAs than the manufacture of nonstick materials, DeSimone says.

Fluorotelomers are long-chain (eight carbon) compounds that tend to form a protective layer on fabrics and paper goods that are coated with the compounds. Over time, oxidation can cause the fluorotelomers to degrade to PFOA, which is difficult to break down due to its durability and bond strength. PFOA also has a tendency to accumulate in cells due to its polarized structure, which has both hydrophobic (water-repelling) and hydrophilic (water-loving) parts, similar to the cell membrane, the researchers say.

DeSimone and his associates, Paul Resnick, Ph.D., and graduate student Ji Guo, designed a group of shorter, four-carbon fluorotelomers, called "C4 plus" that are less bulky than the longer chain fluorotelomers. The newer compounds do not produce PFOA and do not appear to be capable of accumulating in the body upon oxidation. In early laboratory tests, coatings made with the new C4 plus compounds performed as well as or better than the conventional coatings, the researchers say.

The researchers have filed a patent for these new materials, which they say have the same beneficial properties as conventional coatings and can easily be scaled up to industrial standards. Several textile companies have expressed an interest, DeSimone says. His study is funded by NSF.

The finding represents another environmental achievement for DeSimone’s research group. Several years ago, the researchers found a way to manufacture many different fluoropolymers in supercritical carbon dioxide that avoids the use of PFOA. DeSimone received a Presidential Green Chemistry Challenge Award in 1997 for developing this process. Like C4 plus, this process also shows great potential for reducing PFOA in the environment, particularly in the manufacture of nonstick coatings used in cookware, the researcher says.

"The high quality of Joe DeSimone’s science is well-established as a Presidential Green Chemistry Challenge Award winner," says Paul Anastas, Ph.D., director of the ACS Green Chemistry Institute. "It takes that high-quality science to address one of the great chemistry challenges of our time: designing our molecules so that they do not persist and bioaccumulate in humans and in the environment."

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 158,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Charmayne Marsh | EurekAlert!
Further information:
http://www.chemistry.org/portal/a/c/s/1/home.html

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>