Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy advance treats hemophilia in mouse models

23.08.2005


Vector improved in two ways creates a sustained, partial correction to bleeding problems in mice



A virus that typically infects insects could help with the development of gene therapy treatment for Hemophilia A, a condition in which even a bump on the knee can cause serious internal bleeding in people.

Researchers at the University of Iowa Roy J. and Lucille A. Carver College of Medicine improved a vector -- a vehicle that delivers gene therapy to cells -- in two ways to create a sustained, partial correction to bleeding problems in mice engineered to have Hemophilia A, which is also known as factor VIII deficiency. The findings appear in the Sept. 1 issue of the journal Blood (published Aug. 19 online).


The team adapted the outer layer, or "coat," from a baculovirus, a virus that infects butterflies and moths, onto another modified virus. This hybrid vehicle could more easily attach to certain liver cells and allow the genes within the vehicle to enter the cells. The genes then caused the liver cells to make the protein that prevents bleeding.

The researchers also modified the vehicle so that it would express these therapeutic genes only in liver cells, thus reducing the likelihood of negative side effects.

The laboratory findings have significant potential for developing improved treatment for hemophilia but are not yet applicable to people, cautioned Paul McCray, UI professor of pediatrics and the study’s corresponding author. "It’s an exciting finding, but we are still many steps away from a possible gene therapy for people with hemophilia," he said.

Hemophilia A is the leading sex-linked bleeding disorder, affecting one in 5,000 to 10,000 males. People with the condition have a genetic mutation that leaves them with little to no factor VIII protein to prevent uncontrolled bleeding. Individuals with the severe form of the disease have less than 1 percent of the normal amount of protein. However, only a relatively small amount of the normal protein level is needed to make the problem milder and, thus, less life threatening.

"Hemophilia is considered an ideal candidate for correction with gene therapy because if you could just raise the factor VIII activity from less than 1 percent of normal to within 5 to 10 percent of normal, the tendency for spontaneous bleeding and need for hospitalization would diminish dramatically," McCray said.

"In the mouse model in our study, we were able to achieve levels of gene expression that converted the hemophilia A in the mouse from a severe to a mild form. The correction lasted 30 weeks -- the duration of the study," he added.

One of the current treatments for hemophilia involves intravenously delivering recombinant (genetically engineered) human factor VIII protein to prevent bleeding episodes. However, the weekly to bi-weekly preventive treatments are extremely expensive, costing up to $500,000 per year. In addition, over time some patients may develop antibodies to the protein, making the treatments less effective.

In earlier studies, McCray’s team, which includes Yubin Kang, M.D., at the time a UI assistant research scientist in pediatrics (now a UI resident in internal medicine), targeted the liver because its main functional cells, called hepatocytes, can make the factor VIII protein and secrete it into the bloodstream. However, the investigators recognized the need to target the liver more effectively.

"It has been difficult to conclusively identify the cells that normally make factor VIII," McCray said. "Hepatocytes may not be the main source of this protein, but they are relatively easy to target. So we aimed to find a way to get these cells to make more of it. In effect, we’re using the hepatocytes as a factory to make this protein and secrete it into the bloodstream."

To better target the hepatocytes in the mice, the team took the disabled protein coat from the baculovirus Autographa californica and put it on to a modified type of lentivirus called feline immunodeficiency virus (FIV). FIV causes leukemia in cats but no disease in humans.

The hybrid vehicle efficiently bound to receptors on the liver cells because the modified baculovirus coat serves as a "key" that fits into the "lock," or receptor. The percentage of liver cells that took up the virus increased from approximately 5 percent to 20 percent.

The team also modified the part of the FIV that expresses the therapeutic gene so that its promoter that causes gene expression worked only when it was in a liver cell.

"Even if this FIV modified virus goes to other organs of the body, it won’t express well because its promoter is liver-specific," McCray said. "This modification helps prevent negative side effects. For example, if the gene were expressed in immune cells instead of liver cells, it could lead to a damaging immune response."

McCray said the team now is studying additional ways to make the hybrid vector express the protein even better.

Becky Soglin | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>