Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene discovery sheds light on causes of rare disease, cancer

23.08.2005


National Institute on Aging (NIA) researchers have discovered a new gene, FANCM, which sheds light on an important pathway involved in the repair of damaged DNA. Specifically, mutation in this gene is responsible for one of the forms of Fanconi anemia (FA), a rare genetic disorder that primarily affects children. Like many rare, inherited diseases, understanding this gene’s role in the development of FA provides insights into other medical problems -- in this case, age-related conditions including ovarian and pancreatic cancers, as well as leukemia, the researchers said. Discovery of this gene and its protein provides a potential target for the development of drugs that can prevent or alleviate FA and a variety of cancers.

The finding is scheduled for advanced online publication in Nature Genetics during the week of August 21, 2005.* The report also will be published in the journal’s September 2005 print edition. The NIA is a component of the National Institutes of Health (NIH) at the U.S. Department of Health and Human Services.

"FA is a disease that appears to be the result of a breakdown in vital DNA repair mechanisms," said Weidong Wang, Ph.D., a senior investigator in the NIA’s Laboratory of Genetics, who led the study. "Some scientists theorize that DNA damage, which gradually accumulates as we age, leads to malfunctioning genes and deteriorating tissues and organs as well as increased risk of cancer. We believe that this new gene, FANCM, may be a potent cog in the DNA repair machinery," Wang said. "It is possible that we could learn how to promote the function of DNA repair complexes and thereby prevent the age-related accumulation of DNA damage."



FANCM, like most genes, contains information for making a specific protein. The FANCM protein, part of the molecular machine called the FA core complex, is the only protein within this machine that affects DNA by enzyme activity (enzymes are proteins that encourage biochemical reactions, usually speeding them up). FANCM apparently provides an engine that moves the FA DNA repair machine along the length of DNA. It also is a key component of the complex that is switched "on" or "off" by phosphorylation, or the addition of a phosphate group to a protein, in response to DNA damage. In the future, researchers hope to use the newly-discovered activities of FANCM as targets to select drugs that enhance the FA DNA damage response for intervention in patients.

Fanconi anemia, named for Swiss pediatrician Guido Fanconi, affects about 1 in every 300,000 children. If both parents have the same mutation in the same FA gene, each of their children has a one-in-four chance of inheriting the defective gene from both parents and developing FA or certain types of cancer. The disease leads to bone marrow failure (aplastic anemia) and is associated with birth defects such as missing or extra thumbs and skeletal abnormalities of the hips, spine, or ribs. Many who have FA eventually develop acute myeloid leukemia and are prone to head and neck, gastrointestinal, and other cancers. The first symptoms, such as nose bleeds or easy bruising, usually begin before age 12. In rare instances, however, symptoms do not become apparent until adulthood. This is the third FA gene and protein combination identified in the last 3 years by Wang and his colleagues.

Vicky Cahan | EurekAlert!
Further information:
http://www.nature.com/ng/
http://www.nia.nih.gov

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>