Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Public collections of DNA and RNA sequence reach 100 gigabases

22.08.2005


Growth of nucleotide sequence data in EMBL Bank and the other public nucleotide sequence databases from 1982 to the present day.


The world’s three leading public repositories for DNA and RNA sequence information have reached 100 gigabases [100,000,000,000 bases; the ’letters’ of the genetic code] of sequence. Thanks to their data exchange policy, which has paved the way for the global exchange of many types of biological information, the three members of the International Nucleotide Sequence Database Collaboration [INSDC, www.insdc.org] – EMBL Bank [Hinxton, UK], GenBank [Bethesda, USA] and the DNA Data Bank of Japan [Mishima, Japan] all reached this milestone together.

Graham Cameron, Associate Director of EMBL’s European Bioinformatics Institute, says "This is an important milestone in the history of the nucleotide sequence databases. From the first EMBL Data Library entry made available in 1982 to today’s provision of over 55 million sequence entries from at least 200,000 different organisms, these resources have anticipated the needs of molecular biologists and addressed them – often in the face of a serious lack of resources."

David Lipman, Director of the National Center for Biotechnology Information, adds: "Today’s nucleotide sequence databases allow researchers to share completed genomes, the genetic make-up of entire ecosystems, and sequences associated with patents. The INSDC has realized the vision of the researchers who initiated the sequence database projects, by making the global sharing of nucleotide sequence information possible."



Takashi Gojobori, Director of the Center for Information Biology and DNA Data Bank of Japan, says: "The INSDC has laid the foundations for the exchange of many types of biological information. As we enter the era of systems biology and researchers begin to exchange complex types of information, such as the results of experiments that measure the activities of thousands of genes, or computational models of entire processes, it is important to celebrate the achievements of the three databases that pioneered the open exchange of biological information."

In the late 1970s, as researchers started to study organisms at the level of their genetic code, several groups began to explore the possibility of developing a public repository for sequence information. In the early 1980s this led to the launch of two databases: the first was the EMBL Data Library, based at the European Molecular Biology Laboratory [EMBL] in Heidelberg, Germany [the Data Library is now known as EMBL Bank and is based at EMBL’s European Bioinformatics Institute, Hinxton, UK]. Hot on its heels came GenBank, initially hosted by the Los Alamos National Laboratory [LANL] and now based at the National Center for Biotechnology Information, Bethesda, MD, USA. Both of these databases were seeded by collections begun by far-sighted individuals: EMBL Bank by the collection of Kurt Stüber, then based at the University of Cologne in Germany, and GenBank by the collection of Walter Goad at LANL. The two nascent databases began collaborating very early on, an interaction that was initiated by Greg Hamm, the EMBL Data Library’s first employee. Staff at the two databases, which at that time had to find sequences in published journal articles and re-key them into the databases, allocated journals to each team to avoid duplication of effort, and began the arduous task of mapping the fields from one database onto those of the other so that they could exchange information. By the time the International Nucleotide Sequence Consortium became formalized in February 1987, a third partner, the DNA Data Bank of Japan, had been launched at the National Institute of Genetics in Mishima, and collaborated with its European and US counterparts right from the start.

Much has changed since the days when sequences were manually keyed in from the literature or sent on floppy disc and distributed to users on 9-track magnetic tapes, but the purpose of the databases – to make every nucleotide sequence in the public domain freely available to the scientific community as rapidly as possible – remains as strong now as it was in the beginning.

Press Contacts
Cath Brooksbank PhD
EMBL-EBI Scientific Outreach Officer Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
Tel: +44 [0]1223 492525,
E-mail: cath@ebi.ac.uk

Sarah Sherwood
EMBL Information Officer, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
Tel: +49 [0] 6221 387125
E-mail: sarah.sherwood@embl.de

Sarah Sherwood | EMBL
Further information:
http://www.embl.de

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>