Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rockefeller researchers show evidence of asymmetric cell division in mammalian skin

16.08.2005


It took almost 10 years for Elaine Fuchs, Ph.D., a Howard Hughes Medical Institute investigator at Rockefeller University, to find a postdoctoral fellow who shared her curiosity for the direction of cell divisions in the skin. Then Terry Lechler, Ph.D., came along and the result is a new paper published online last week in Nature detailing how asymmetric cell divisions are essential for skin development. Their findings challenge long standing ideas of how skin forms and functions and is one of the first documentations of asymmetric cell division in mammals.



The epidermis of the skin forms multiple layers, the outermost of which is at the body surface. The bottom, or basal, layer is attached to an underlying matrix, called a basement membrane, which contains many growth stimulating molecules. As cells move from the basal layer toward the surface, they differentiate and produce protective proteins before they finally die and are sloughed off.

"The epidermis creates a Saran Wrap seal for our body surface, keeping fluids in and harmful bacteria out," says Fuchs, who is the Rebecca C. Lancefield Professor and head of the Laboratory of Mammalian Cell Biology at Rockefeller. "Through experiments in cell culture in the 1980s, everyone believed that the epidermis maintained its protective function by ejecting cells from the basal layer and forcing them upward. Our data show that asymmetric divisions occur perpendicular to the basal layer, resulting in one of the two daughter cells being naturally displaced out of the basal layer. This opens up new ways to approach the pathology of different skin diseases and provides an explanation for how stem cells might generate one new stem cell and one differentiating cell at the same time."


Lechler first documented how often he saw cells in the basal layer of skin in mice dividing perpendicularly to the basement membrane below the bottom layer of cells. He found that at least 75 percent of all the cell divisions he observed were in this orientation.

"It was obvious from the first few mice that I looked at that not only did perpendicular divisions occur, but they were extremely common," says Lechler. "We can’t rule out that some cells detach from the bottom layer and migrate upwards, but this is most likely a minor component of skin stratification."

He then turned to flies for help. Asymmetric divisions, and the proteins involved in selecting the division direction, are well documented in fruit flies. Specifically, the proteins Inscuteable and Pins form a complex that anchors one pole of the machinery that drives division to the top, or apical, side of the cell, leaving the other pole at the base of the cell. This defines the axis of the division plane. Lechler found the mammalian equivalents of these proteins and looked to see whether or not they were involved.

"Anywhere Terry saw a cell whose division plane was oriented perpendicular to the basal layer, he saw the Inscuteable complex forming on the apical side of the cell," Fuchs says. "It was the first time that this complex, involved in asymmetric divisions in fruit flies, has been implicated in a similar fashion in mice. And it is fascinating that asymmetric divisions turn out to control skin differentiation."

But not everything works exactly the same. Lechler also discovered that integrin and cadherin proteins contribute to the asymmetric divisions in the epidermis. Integrins are proteins that anchor cells in the bottom epidermal layer to the basement membrane, and cadherins are important in maintaining adhesion between cells so they can create the barrier that keeps harmful bacteria out. Neither have been previously shown to be involved in asymmetric divisions in the fly. However in mice, if these proteins are mutated or missing, the cells don’t divide properly.

"Our data help us to understand how cells are able to detach from the basement layer and move upward," Fuchs says. "When the cells divide asymmetrically, so that one daughter cell sits atop of the other, the cell on top is already detached from its basement membrane rich in growth factors. Without integrins and growth factors, the top cell is already different from the bottom cell. Thus, an asymmetric division creates a natural way of partitioning growth-promoting and differentiation-promoting factors."

Other tissues and cell types may also use asymmetric cell division to create daughter cells that are different. Most notably stem cells may use this mechanism to create progeny where one cell stays the stem cell, but the other cell goes on to differentiate.

"Now that this system is set up, it will make it very easy to go on and study asymmetric cell division in other tissues and in the stem cell compartment," says Lechler. "It will also be interesting to look at different skin disorders and cancer to see if the divisions are perturbed, and whether that is contributing to pathology of the diseases."

Kristine A. Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>