Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rockefeller researchers show evidence of asymmetric cell division in mammalian skin

16.08.2005


It took almost 10 years for Elaine Fuchs, Ph.D., a Howard Hughes Medical Institute investigator at Rockefeller University, to find a postdoctoral fellow who shared her curiosity for the direction of cell divisions in the skin. Then Terry Lechler, Ph.D., came along and the result is a new paper published online last week in Nature detailing how asymmetric cell divisions are essential for skin development. Their findings challenge long standing ideas of how skin forms and functions and is one of the first documentations of asymmetric cell division in mammals.



The epidermis of the skin forms multiple layers, the outermost of which is at the body surface. The bottom, or basal, layer is attached to an underlying matrix, called a basement membrane, which contains many growth stimulating molecules. As cells move from the basal layer toward the surface, they differentiate and produce protective proteins before they finally die and are sloughed off.

"The epidermis creates a Saran Wrap seal for our body surface, keeping fluids in and harmful bacteria out," says Fuchs, who is the Rebecca C. Lancefield Professor and head of the Laboratory of Mammalian Cell Biology at Rockefeller. "Through experiments in cell culture in the 1980s, everyone believed that the epidermis maintained its protective function by ejecting cells from the basal layer and forcing them upward. Our data show that asymmetric divisions occur perpendicular to the basal layer, resulting in one of the two daughter cells being naturally displaced out of the basal layer. This opens up new ways to approach the pathology of different skin diseases and provides an explanation for how stem cells might generate one new stem cell and one differentiating cell at the same time."


Lechler first documented how often he saw cells in the basal layer of skin in mice dividing perpendicularly to the basement membrane below the bottom layer of cells. He found that at least 75 percent of all the cell divisions he observed were in this orientation.

"It was obvious from the first few mice that I looked at that not only did perpendicular divisions occur, but they were extremely common," says Lechler. "We can’t rule out that some cells detach from the bottom layer and migrate upwards, but this is most likely a minor component of skin stratification."

He then turned to flies for help. Asymmetric divisions, and the proteins involved in selecting the division direction, are well documented in fruit flies. Specifically, the proteins Inscuteable and Pins form a complex that anchors one pole of the machinery that drives division to the top, or apical, side of the cell, leaving the other pole at the base of the cell. This defines the axis of the division plane. Lechler found the mammalian equivalents of these proteins and looked to see whether or not they were involved.

"Anywhere Terry saw a cell whose division plane was oriented perpendicular to the basal layer, he saw the Inscuteable complex forming on the apical side of the cell," Fuchs says. "It was the first time that this complex, involved in asymmetric divisions in fruit flies, has been implicated in a similar fashion in mice. And it is fascinating that asymmetric divisions turn out to control skin differentiation."

But not everything works exactly the same. Lechler also discovered that integrin and cadherin proteins contribute to the asymmetric divisions in the epidermis. Integrins are proteins that anchor cells in the bottom epidermal layer to the basement membrane, and cadherins are important in maintaining adhesion between cells so they can create the barrier that keeps harmful bacteria out. Neither have been previously shown to be involved in asymmetric divisions in the fly. However in mice, if these proteins are mutated or missing, the cells don’t divide properly.

"Our data help us to understand how cells are able to detach from the basement layer and move upward," Fuchs says. "When the cells divide asymmetrically, so that one daughter cell sits atop of the other, the cell on top is already detached from its basement membrane rich in growth factors. Without integrins and growth factors, the top cell is already different from the bottom cell. Thus, an asymmetric division creates a natural way of partitioning growth-promoting and differentiation-promoting factors."

Other tissues and cell types may also use asymmetric cell division to create daughter cells that are different. Most notably stem cells may use this mechanism to create progeny where one cell stays the stem cell, but the other cell goes on to differentiate.

"Now that this system is set up, it will make it very easy to go on and study asymmetric cell division in other tissues and in the stem cell compartment," says Lechler. "It will also be interesting to look at different skin disorders and cancer to see if the divisions are perturbed, and whether that is contributing to pathology of the diseases."

Kristine A. Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>