Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rockefeller researchers show evidence of asymmetric cell division in mammalian skin

16.08.2005


It took almost 10 years for Elaine Fuchs, Ph.D., a Howard Hughes Medical Institute investigator at Rockefeller University, to find a postdoctoral fellow who shared her curiosity for the direction of cell divisions in the skin. Then Terry Lechler, Ph.D., came along and the result is a new paper published online last week in Nature detailing how asymmetric cell divisions are essential for skin development. Their findings challenge long standing ideas of how skin forms and functions and is one of the first documentations of asymmetric cell division in mammals.



The epidermis of the skin forms multiple layers, the outermost of which is at the body surface. The bottom, or basal, layer is attached to an underlying matrix, called a basement membrane, which contains many growth stimulating molecules. As cells move from the basal layer toward the surface, they differentiate and produce protective proteins before they finally die and are sloughed off.

"The epidermis creates a Saran Wrap seal for our body surface, keeping fluids in and harmful bacteria out," says Fuchs, who is the Rebecca C. Lancefield Professor and head of the Laboratory of Mammalian Cell Biology at Rockefeller. "Through experiments in cell culture in the 1980s, everyone believed that the epidermis maintained its protective function by ejecting cells from the basal layer and forcing them upward. Our data show that asymmetric divisions occur perpendicular to the basal layer, resulting in one of the two daughter cells being naturally displaced out of the basal layer. This opens up new ways to approach the pathology of different skin diseases and provides an explanation for how stem cells might generate one new stem cell and one differentiating cell at the same time."


Lechler first documented how often he saw cells in the basal layer of skin in mice dividing perpendicularly to the basement membrane below the bottom layer of cells. He found that at least 75 percent of all the cell divisions he observed were in this orientation.

"It was obvious from the first few mice that I looked at that not only did perpendicular divisions occur, but they were extremely common," says Lechler. "We can’t rule out that some cells detach from the bottom layer and migrate upwards, but this is most likely a minor component of skin stratification."

He then turned to flies for help. Asymmetric divisions, and the proteins involved in selecting the division direction, are well documented in fruit flies. Specifically, the proteins Inscuteable and Pins form a complex that anchors one pole of the machinery that drives division to the top, or apical, side of the cell, leaving the other pole at the base of the cell. This defines the axis of the division plane. Lechler found the mammalian equivalents of these proteins and looked to see whether or not they were involved.

"Anywhere Terry saw a cell whose division plane was oriented perpendicular to the basal layer, he saw the Inscuteable complex forming on the apical side of the cell," Fuchs says. "It was the first time that this complex, involved in asymmetric divisions in fruit flies, has been implicated in a similar fashion in mice. And it is fascinating that asymmetric divisions turn out to control skin differentiation."

But not everything works exactly the same. Lechler also discovered that integrin and cadherin proteins contribute to the asymmetric divisions in the epidermis. Integrins are proteins that anchor cells in the bottom epidermal layer to the basement membrane, and cadherins are important in maintaining adhesion between cells so they can create the barrier that keeps harmful bacteria out. Neither have been previously shown to be involved in asymmetric divisions in the fly. However in mice, if these proteins are mutated or missing, the cells don’t divide properly.

"Our data help us to understand how cells are able to detach from the basement layer and move upward," Fuchs says. "When the cells divide asymmetrically, so that one daughter cell sits atop of the other, the cell on top is already detached from its basement membrane rich in growth factors. Without integrins and growth factors, the top cell is already different from the bottom cell. Thus, an asymmetric division creates a natural way of partitioning growth-promoting and differentiation-promoting factors."

Other tissues and cell types may also use asymmetric cell division to create daughter cells that are different. Most notably stem cells may use this mechanism to create progeny where one cell stays the stem cell, but the other cell goes on to differentiate.

"Now that this system is set up, it will make it very easy to go on and study asymmetric cell division in other tissues and in the stem cell compartment," says Lechler. "It will also be interesting to look at different skin disorders and cancer to see if the divisions are perturbed, and whether that is contributing to pathology of the diseases."

Kristine A. Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>