Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No small feat: First ever gene therapy success for muscular dystrophy achieved

16.08.2005


Using mini gene and new systemic approach treated animals were significantly improved, lived longer

Researchers from the University of Pittsburgh report the first study to achieve success with gene therapy for the treatment of congenital muscular dystrophy (CMD) in mice, demonstrating that the formidable scientific challenges that have cast doubt on gene therapy ever being feasible for children with muscular dystrophy can be overcome. Moreover, their results, published in this week’s online edition of the Proceedings of the National Academy of Sciences (PNAS), indicate that a single treatment can have expansive reach to muscles throughout the body and significantly increase survival.

CMD is a group of some 20 inherited muscular dystrophies characterized by progressive and severe muscle wasting and weakness first noticed soon after birth. No effective treatments exist and children usually die quite young.



Despite gene therapy being among the most vigorously studied approaches for muscular dystrophy, it has been beset with uniquely difficult hurdles. The genes to replace those that are defective in CMD are larger than most, so it has not been possible to apply the same methods successfully used for delivering other types of genes. And because CMD affects all muscles, an organ that accounts for 40 percent of body weight, gene therapy can only have real therapeutic benefit if it is able to reverse genetic defects in every cell of the body’s 600 muscle groups.

By using a miniature gene, similar in function to the one defective in CMD, and applying a newly developed method for "systemic" gene delivery, the Pitt researchers have shown that gene therapy for muscular dystrophy is both feasible and effective in a mouse model of especially profound disease. Using this approach, the team, led by Xiao Xiao, Ph.D., associate professor of orthopaedic surgery and molecular genetics and biochemistry at the University of Pittsburgh School of Medicine, report that treated mice had physiological improvements in the muscles of the heart, diaphragm, abdomen and legs; and they grew faster, were physically more active and lived four times as long as untreated animals.

"While we have much farther to go until we can say gene therapy will work in children, we have shown here a glimmer of hope by presenting the first evidence of a successful gene therapy approach that improved both the general health and longevity in mice with congenital muscular dystrophy," said Dr. Xiao.

The most common form of CMD, and also one of the most severe, is due to a genetic mutation of laminin alpha-2, a protein that is essential for maintaining the structures that surround muscle cells and is an integral link in the chain of proteins that regulate the cell’s normal contraction and relaxation. If the protein is defective, or is lacking, this outside scaffold, called the extra-cellular matrix, disintegrates, and the muscle cells become vulnerable to damage.

Simply replacing the defective gene with a good laminin alpha-2 gene is not possible because its size makes it impossible for researchers to get it to squeeze inside viral vectors – disarmed viruses that are used to shuttle genes into cells. But the team found a good stand-in in a similar protein called agrin that when miniaturized could be inserted inside an adeno-associated virus (AAV) vector. Dr. Xiao’s laboratory is known for its work developing this vector, which they have previously shown is the most efficient means for delivering genes to muscle cells.

In the current study, the authors show that two strains of AAV, AAV-1 and AAV-2, were effective in transferring the mini-agrin gene to cells in two mouse models. The AAV-1 vector was given by systemic delivery – a single infusion into the abdominal cavity – a method the authors only recently described and which they used for the first time in this study to transfer a therapeutic gene. The AAV-2 vector was delivered locally, given by intramuscular injection to different muscles of the leg. With both approaches, muscle cells were able to assimilate and copy the genetic instructions for making mini-agrin. Once produced, the mini-agrin protein functionally took the place of the laminin alpha-2 protein by binding to the key proteins on either end, thus restoring the cell’s outside scaffolding and reestablishing the missing link to key structures inside the cell.

Clearly, the authors are most excited about the impressive results achieved in their experiments using systemic gene delivery, which proved there could be significant therapeutic improvements and even be life-saving. Yet they say their results are far from ideal and more work lies ahead.

"It’s probably not realistic to expect that we can achieve complete success using the mini-agrin gene, which while somewhat similar, is structurally unrelated to laminin alpha-2. Unless we address the underlying cause of congenital muscular dystrophy we’re not likely to be able to completely arrest or cure CMD," added Chungping Qiao, M.D., Ph.D., the study’s first author and a research associate fellow in Dr. Xiao’s lab.

Future directions for research include finding a way to engineer the laminin alpha-2 gene. For this study, the authors chose to use the mini-agrin gene because researchers from the University of Basel, Switzerland, had already demonstrated it could improve the symptoms of muscular dystrophy in a transgenic mouse model, which has little clinical relevance. The Pitt researchers might also explore approaches that combine genes that promote both muscle and nerve growth, as well as focus on improving the AAV vectors.

In addition to Drs. Xiao and Qiao, other authors are Jianbin Li; Tong Zhu, M.D., Ph.D.; Xiaojung Ye, M.D., Ph.D.; Chunlian Chen; and Juan Li, M.D., all from the department of orthopaedic surgery; and from the department of cell biology and physiology, Romesh Draviam and Simon Watkins, Ph.D.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>