Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find that combined gene therapy eliminates glioblastoma multiforme in lab studies

15.08.2005


Despite aggressive treatment, glioblastoma multiforme (GBM) – the most common and deadly of brain cancers – usually claims the lives of its victims within six to 12 months of diagnosis. Because GBM is so aggressive, the disease has been the target of a number of laboratory and clinical studies investigating the effectiveness of gene therapy to deliver novel therapies to the brain. In laboratory studies, this type of gene therapy has proved almost completely effective. But in clinical trials, it has had limited effectiveness.



To overcome these limitations, researchers at Cedars-Sinai Medical Center developed a large brain tumor model in laboratory rats that would more accurately predict the outcome of gene therapies in patients. In addition, they tested a genetically engineered virus to deliver two proteins directly to the brain. Their findings, reported in the August 15th issue of the journal Cancer Research, show that the majority of rats bearing large tumors were still alive six months after combined treatment with two proteins: RAdTK, a protein that kills cancer cells, and RAdFlt3L, which stimulates immune or dendritic cells in the brain.

"Our study shows that GBM tumors were completely eliminated in lab rats, likely because the two proteins increase the production of fully mature immune cells within the brain," said Maria Castro, Ph.D., co-director of the Gene Therapeutics Research Institute at Cedars-Sinai Medical Center and the senior author of the study. "This suggests that combined RAdFlt3L and RAdTK gene therapy may ultimately provide an effective treatment for patients undergoing clinical trials with GBM."


GBM tumors derive from brain astrocytes, a cell that normally supports and nurtures the brain’s neurons. GBM grows quickly, often becoming very large before any symptoms are experienced. Once GBM is diagnosed, conventional treatment begins with surgery to remove as much of the tumor as possible and is then followed with radiation and/or chemotherapy to slow progression of the disease. But despite aggressive treatment, the tumors recur and patients usually die within a year’s time.

To find another way to more effectively treat GBM, scientists have begun investigating the use of gene therapy to deliver novel therapeutic agents directly to the brain. Typically, these studies have tested the use of the suicide gene from the herpes simplex virus to develop a gene therapy approach that kills cancer cells in the presence of the antiviral drug – gancyclovir. In laboratory studies, this type of gene therapy has proved almost 100 percent effective. But in clinical trials, it has had limited effectiveness, suggesting that the tumor mass is too large for the gene to effect long-term.

"Because we haven’t seen the same positive results with gene therapy in clinical trials that we’ve seen treating GBM in laboratory rats, we realized that we needed to design a better model that more closely mimicked these tumors in patients," Castro said. "We also wanted to test whether a combined gene therapy strategy using proteins known to kill cancer cells or promote an immune response would work to eliminate these larger tumors in the rats."

Gene therapy is an experimental treatment that uses genetically engineered viruses to transport genes and/or proteins into cells. Just like a viral infection, the viruses work by tricking cells into accepting them as part of their own genetic coding. To make them safe, scientists remove the genetic viral genes that cause infection and engineer them so that they stop reproducing after they have delivered the therapeutic genes.

In this study, the researchers first developed a large GBM tumor model and implanted them in rats, allowing the tumor to grow for 10 days, when they were at their largest. Secondly, the investigators tested the effectiveness of various gene therapies used in combination or individually to see whether they would shrink or eliminate tumors.

To determine whether the size of the tumor significantly affected survival, the researches implanted both large and smaller GBM tumors in rats. The investigators then treated rats bearing GBM tumors with single or combined gene therapies (RAdTK and/or RAdFlt3l), or a saline placebo, as a control. They found that RAdTK treatment was 100 percent effective when delivered into small tumors, but only 20 percent effective when injected into large tumors. RAdFlt3L, on the other hand, was 60 percent effective if delivered into small tumors, but failed completely if injected into the large tumors. But when both RAdTK and RAdFlt3l were given in combination, the investigators found 70 percent of rats were still alive after six months of treatment and that the large GBM tumors had completely disappeared or shrank significantly.

"Just as with patients, our results emphasize that tumor size at the time of treatment is critical to predict clinical outcome," said Pedro Lowenstein, M.D., Ph.D., director of the Gene Therapeutic Research Institute at Cedars-Sinai. "Our model reproduces more closely the human disease condition where tumor size at the time of treatment determines how well the patient will respond to therapies."

"Our results show for the first time, that we could elicit a potent and stable anti-tumor immune response in the brains of rats bearing large GBM tumors," Castro said. "In these pre-clinical studies, combined gene therapy treatment with RAdTK and RAdFlt3L dramatically increased survival, without adverse immune reactions in the brain."

Kelli Hanley | EurekAlert!
Further information:
http://www.cshs.org
http://www.csmc.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>