Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find that combined gene therapy eliminates glioblastoma multiforme in lab studies

15.08.2005


Despite aggressive treatment, glioblastoma multiforme (GBM) – the most common and deadly of brain cancers – usually claims the lives of its victims within six to 12 months of diagnosis. Because GBM is so aggressive, the disease has been the target of a number of laboratory and clinical studies investigating the effectiveness of gene therapy to deliver novel therapies to the brain. In laboratory studies, this type of gene therapy has proved almost completely effective. But in clinical trials, it has had limited effectiveness.



To overcome these limitations, researchers at Cedars-Sinai Medical Center developed a large brain tumor model in laboratory rats that would more accurately predict the outcome of gene therapies in patients. In addition, they tested a genetically engineered virus to deliver two proteins directly to the brain. Their findings, reported in the August 15th issue of the journal Cancer Research, show that the majority of rats bearing large tumors were still alive six months after combined treatment with two proteins: RAdTK, a protein that kills cancer cells, and RAdFlt3L, which stimulates immune or dendritic cells in the brain.

"Our study shows that GBM tumors were completely eliminated in lab rats, likely because the two proteins increase the production of fully mature immune cells within the brain," said Maria Castro, Ph.D., co-director of the Gene Therapeutics Research Institute at Cedars-Sinai Medical Center and the senior author of the study. "This suggests that combined RAdFlt3L and RAdTK gene therapy may ultimately provide an effective treatment for patients undergoing clinical trials with GBM."


GBM tumors derive from brain astrocytes, a cell that normally supports and nurtures the brain’s neurons. GBM grows quickly, often becoming very large before any symptoms are experienced. Once GBM is diagnosed, conventional treatment begins with surgery to remove as much of the tumor as possible and is then followed with radiation and/or chemotherapy to slow progression of the disease. But despite aggressive treatment, the tumors recur and patients usually die within a year’s time.

To find another way to more effectively treat GBM, scientists have begun investigating the use of gene therapy to deliver novel therapeutic agents directly to the brain. Typically, these studies have tested the use of the suicide gene from the herpes simplex virus to develop a gene therapy approach that kills cancer cells in the presence of the antiviral drug – gancyclovir. In laboratory studies, this type of gene therapy has proved almost 100 percent effective. But in clinical trials, it has had limited effectiveness, suggesting that the tumor mass is too large for the gene to effect long-term.

"Because we haven’t seen the same positive results with gene therapy in clinical trials that we’ve seen treating GBM in laboratory rats, we realized that we needed to design a better model that more closely mimicked these tumors in patients," Castro said. "We also wanted to test whether a combined gene therapy strategy using proteins known to kill cancer cells or promote an immune response would work to eliminate these larger tumors in the rats."

Gene therapy is an experimental treatment that uses genetically engineered viruses to transport genes and/or proteins into cells. Just like a viral infection, the viruses work by tricking cells into accepting them as part of their own genetic coding. To make them safe, scientists remove the genetic viral genes that cause infection and engineer them so that they stop reproducing after they have delivered the therapeutic genes.

In this study, the researchers first developed a large GBM tumor model and implanted them in rats, allowing the tumor to grow for 10 days, when they were at their largest. Secondly, the investigators tested the effectiveness of various gene therapies used in combination or individually to see whether they would shrink or eliminate tumors.

To determine whether the size of the tumor significantly affected survival, the researches implanted both large and smaller GBM tumors in rats. The investigators then treated rats bearing GBM tumors with single or combined gene therapies (RAdTK and/or RAdFlt3l), or a saline placebo, as a control. They found that RAdTK treatment was 100 percent effective when delivered into small tumors, but only 20 percent effective when injected into large tumors. RAdFlt3L, on the other hand, was 60 percent effective if delivered into small tumors, but failed completely if injected into the large tumors. But when both RAdTK and RAdFlt3l were given in combination, the investigators found 70 percent of rats were still alive after six months of treatment and that the large GBM tumors had completely disappeared or shrank significantly.

"Just as with patients, our results emphasize that tumor size at the time of treatment is critical to predict clinical outcome," said Pedro Lowenstein, M.D., Ph.D., director of the Gene Therapeutic Research Institute at Cedars-Sinai. "Our model reproduces more closely the human disease condition where tumor size at the time of treatment determines how well the patient will respond to therapies."

"Our results show for the first time, that we could elicit a potent and stable anti-tumor immune response in the brains of rats bearing large GBM tumors," Castro said. "In these pre-clinical studies, combined gene therapy treatment with RAdTK and RAdFlt3L dramatically increased survival, without adverse immune reactions in the brain."

Kelli Hanley | EurekAlert!
Further information:
http://www.cshs.org
http://www.csmc.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>