Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gradient guides nerve growth down spinal cord

15.08.2005


The same family of chemical signals that attracts developing sensory nerves up the spinal cord toward the brain serves to repel motor nerves, sending them in the opposite direction, down the cord and away from the brain, report researchers at the University of Chicago in the September 2005 issue of Nature Neuroscience (available online August 14). The finding may help physicians restore function to people with paralyzing spinal cord injuries.



Growing nerve cells send out axons, long narrow processes that search out and connect with other nerve cells. Axons are tipped with growth cones, bearing specific receptors, which detect chemical signals and then grow toward or away from the source.

In 2003, University of Chicago researchers reported that a gradient of biochemical signals known as the Wnt proteins acted as a guide for sensory nerves. These nerves have a receptor on the tips of their growth cones, known as Frizzled3, which responds to Wnts.


In this paper, the researchers show that the nerves growing in the opposite direction are driven down the cord, away from the brain, under the guidance of a receptor, known as Ryk, with very different tastes. Ryk sees Wnts as repulsive signals.

"This is remarkable example of the efficiency of nature," said Yimin Zou, Ph.D., assistant professor of neurobiology, pharmacology and physiology at the University of Chicago. "The nervous system is using a similar set of chemical signals to regulate axon traffic in both directions along the length of the spinal cord."

It may also prove a boon to clinicians, offering clues about how to grow new connections among neurons to repair or replace damaged nerves. Unlike many other body components, damaged axons in the adult spinal cord cannot adequately repair themselves. An estimated 250,000 people in the United States suffer from permanent spinal cord injuries, with about 11,000 new cases each year.

This study focused on corticospinal neurons, which control voluntary movements and fine-motor skills. These are some of the longest cells in the body. The corticospinal neurons connect to groups of neurons along the length of spinal cord, some of which reach out of the spinal cord. They pass out of the cord between each pair of vertebrae and extend to different parts of the body, for example the hand or foot.

Zou and colleagues studied the guidance system used to assemble this complex network in newborn mice, where corticospinal axon growth is still underway. Before birth, axons grow out from the cell body of a nerve cell in the motor cortex. The axons follow a path back through the brain to the spinal cord.

By the time of birth, the axons are just growing into the cord. During the first week after birth they grow down the cervical and thoracic spinal cord until they reach their proper position, usually after seven to ten days.

From previous studies, Zou and colleagues knew that a gradient of various Wnt proteins, including Wnt4, formed along the spinal cord around the time of birth. Here they show that two other proteins, Wnt1 and Wnt5a are produced at high concentrations at the top of the cord and at consecutively lower levels farther down.

They also found that motor nerves are guided by Wnts through a different receptor, called Ryk, that mediates repulsion by Wnts. Antibodies that blocked the Wnt-Ryk interaction blocked the downward growth of corticospinal axons when injected into the space between the dura and spinal cord in newborn mice.

This knowledge, coupled with emerging stem cell technologies, may provide the most promising current approach to nervous system regeneration. If Wnt proteins could be used to guide transplanted nerve cells -- or someday, embryonic stem cells -- to restore the connections between the body and the brain, "it could revolutionize treatment of patients with paralyzing injuries to these nerves," Zou suggests.

"Although half the battle is acquiring the right cells to repair the nervous system," he said, "the other half is guiding them to their targets where they can make the right connections."

"Understanding how the brain and the spinal cord are connected during embryonic development could give us clues about how to repair damaged connections in adults with traumatic injury or degenerative disorders," Zou added.

The National Institute of Neurological Disorders and Stroke, the Schweppe Foundation, the Robert Packard ALS Center at Johns Hopkins, the University of Chicago Brain Research Foundation and the Jack Miller Peripheral Neuropathy Center supported this study.

Additional authors include Yaobu Liu, Jun Shi. Chin-Chun Lu, and Anna Lyuksyutova of the University of Chicago, and Zheng-Bei Wang and Xuejun Song of the Parker College Research Institute in Dallas Texas.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>