Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tadpole soon to help in the fight against cancer and lymphedema

15.08.2005


Lymph circulates in our bodies through a complex network of lymphatic vessels, of which little is known. This network is, however, of major importance for the support of the immune system and the fluid in our body. Researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected with the Catholic University of Leuven, are the first to indicate that this network can be studied with the help of tadpoles. This accelerates research of the lymphatic vessel network. With tadpoles one can now very quickly identify new genes that play a part in the development and functioning of the lymphatic vessel network. This is a first step in the search for solutions for illnesses related to the lymphatic vessel network, such as cancer and lymphedema.



Lymph: a very important colorless fluid

Fluid and proteins leak out of the blood vessels during blood circulation in the body. A network of lymphatic vessels catches this extravasated colorless fluid, lymph, and transports it back to the blood vessel network. The lymphatic vessel network is of major importance. It is essential for regulating fluid in the body and for the support of the immune system that protects us from pathogenic organisms. Faults in the making or functioning of this network cause many disorders, such as inflammatory and infectious diseases and lymphedema (a swelling caused by water retention). On the other hand, a well-functioning lymphatic vessel network can simplify the spread of cancer cells. A thorough understanding of this network is thus essential for seeking a solution for these diseases.


The search for a suitable model system

As far back as in 1627 Gasparo Asellius discovered the lymphatic vessels as ‘milky veins’. Yet the lymphatic network has not been studied much until now and is therefore as good as unknown, quite amazing seeing its importance for our health. One of the reasons for this lack of study is the fact that there was not a good model system until now. Lymphatic vessels can be studied in mice but this takes time and is extremely complex. Moreover, a study of mice only enables the examination of gene per gene, which complicates revealing the combined action between various genetic factors. For efficient research smaller model organisms are used, such as the zebrafish, which is popular in the study of the blood vessel system. But the zebrafish also offers little comfort, as it does not have any lymphatic vessels.

In the early 20th century studies suggested that tadpoles do have lymphatic vessels. This urged Peter Carmeliet and his research group to examine whether tadpoles can form a suitable model system for the study of the lymphatic vessel network. Tadpoles can easily be genetically modified, which is why they are an ideal model system in which it is relatively easy to identify genes that are important in the development of complex biological structures like lymphatic vessels.

Unraveling the lymphatic vessel system through tadpoles

With their research, the research group op Peter Carmeliet indicated that tadpoles are extremely suitable for the study of lymphatic vessels. To do this they used Prox1, a protein that is essential for the formation of lymphatic vessels. With the help of coloration techniques they visualized the areas in tadpoles where Prox1 is made: the lymphatic vessels. With the same coloration techniques the researchers indicated that the development of lymphatic vessels in tadpoles is comparable to mice and humans. A second part of their research was altering tadpoles in such a way that they make much less Prox1 than normal tadpoles. This resulted in a badly developed lymphatic vessel system, because of which the tadpoles showed signs of lymphedema. It did not have any effect on the blood vessel system.

With these results the VIB researchers are the first to prove that tadpoles are perfect model organisms for the study of lymphatic vessels. In the future tadpoles can be used to identify genes that are important for the development of this complex network. This paves the way for the search for solutions for illnesses caused by faults in the lymphatic vessel network.

Ann Van Gysel | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>