Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tadpole soon to help in the fight against cancer and lymphedema

15.08.2005


Lymph circulates in our bodies through a complex network of lymphatic vessels, of which little is known. This network is, however, of major importance for the support of the immune system and the fluid in our body. Researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected with the Catholic University of Leuven, are the first to indicate that this network can be studied with the help of tadpoles. This accelerates research of the lymphatic vessel network. With tadpoles one can now very quickly identify new genes that play a part in the development and functioning of the lymphatic vessel network. This is a first step in the search for solutions for illnesses related to the lymphatic vessel network, such as cancer and lymphedema.



Lymph: a very important colorless fluid

Fluid and proteins leak out of the blood vessels during blood circulation in the body. A network of lymphatic vessels catches this extravasated colorless fluid, lymph, and transports it back to the blood vessel network. The lymphatic vessel network is of major importance. It is essential for regulating fluid in the body and for the support of the immune system that protects us from pathogenic organisms. Faults in the making or functioning of this network cause many disorders, such as inflammatory and infectious diseases and lymphedema (a swelling caused by water retention). On the other hand, a well-functioning lymphatic vessel network can simplify the spread of cancer cells. A thorough understanding of this network is thus essential for seeking a solution for these diseases.


The search for a suitable model system

As far back as in 1627 Gasparo Asellius discovered the lymphatic vessels as ‘milky veins’. Yet the lymphatic network has not been studied much until now and is therefore as good as unknown, quite amazing seeing its importance for our health. One of the reasons for this lack of study is the fact that there was not a good model system until now. Lymphatic vessels can be studied in mice but this takes time and is extremely complex. Moreover, a study of mice only enables the examination of gene per gene, which complicates revealing the combined action between various genetic factors. For efficient research smaller model organisms are used, such as the zebrafish, which is popular in the study of the blood vessel system. But the zebrafish also offers little comfort, as it does not have any lymphatic vessels.

In the early 20th century studies suggested that tadpoles do have lymphatic vessels. This urged Peter Carmeliet and his research group to examine whether tadpoles can form a suitable model system for the study of the lymphatic vessel network. Tadpoles can easily be genetically modified, which is why they are an ideal model system in which it is relatively easy to identify genes that are important in the development of complex biological structures like lymphatic vessels.

Unraveling the lymphatic vessel system through tadpoles

With their research, the research group op Peter Carmeliet indicated that tadpoles are extremely suitable for the study of lymphatic vessels. To do this they used Prox1, a protein that is essential for the formation of lymphatic vessels. With the help of coloration techniques they visualized the areas in tadpoles where Prox1 is made: the lymphatic vessels. With the same coloration techniques the researchers indicated that the development of lymphatic vessels in tadpoles is comparable to mice and humans. A second part of their research was altering tadpoles in such a way that they make much less Prox1 than normal tadpoles. This resulted in a badly developed lymphatic vessel system, because of which the tadpoles showed signs of lymphedema. It did not have any effect on the blood vessel system.

With these results the VIB researchers are the first to prove that tadpoles are perfect model organisms for the study of lymphatic vessels. In the future tadpoles can be used to identify genes that are important for the development of this complex network. This paves the way for the search for solutions for illnesses caused by faults in the lymphatic vessel network.

Ann Van Gysel | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>