Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enlisting genomics to understand flu evolution

26.07.2005


Multiple strains of the flu virus, circulating in a population at the same time, can reshuffle their genes and create a new virus, one capable of infecting many more people, according to a new study in the open-access journal PLoS Biology. This finding may help scientists make better predictions about which viral strains will attack during upcoming flu seasons and design more effective flu vaccines.



In the first large-scale effort to sequence the flu genome, Edward Holmes, David Lipman, and colleagues examined the genomes of 156 influenza A viruses (serotype H3N2) collected by New York State public health officials between 1999 and 2004. "We found that there are co-circulating minor variants that are not infecting many people," says Lipman. "One of these can become the next epidemic strain."

These co-circulating viruses can exchange genes in a way that creates novel, epidemiologically significant strains--a process that can occur when someone is infected simultaneously by more than one strain. The genetic reshuffling demonstrated in this study is the first to examine in detail a reassortment event from a persistently cocirculating minor strain to a previously dominant strain leading to an epidemiologically significant outcome--the emergence of the "Fujian" strain in the 2003-2004 flu season.


The Institute for Genomic Research, with funding from the National Institute for Allergy and Infectious Diseases, sequenced the genomes of the collected flu viruses. Examining these sequences, Holmes et al. found that a relatively uncommon strain of virus contributed its hemagglutinin gene (a highly variable viral protein that must be recognized by the host’s immune defense system) to a virus common during the previous year. The reassorted virus suddenly became capable of infecting thousands. "The key thing here is that the general notion of epidemic flu is that there’s a series of successions by variants of the flu we got the previous year." But the new study shows that persistently cocirculating minor strains--which might be accumulating mutations with little obvious epidemiological consequences--can suddenly cause an epidemic with just one or two more mutations.

These results suggest that "the potential diversity is greater than we thought," says Lipman. "We need to have more comprehensive information on the entire genome [and] enough samples from around the world," he adds, to find the benign virus strain that will become next season’s scourge. The more genomes scientists collect--and the more refined the tools of genomics become--the greater the chances of developing more effective vaccines.

Paul Ocampo | EurekAlert!
Further information:
http://www.plosbiology.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>