Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enlisting genomics to understand flu evolution

26.07.2005


Multiple strains of the flu virus, circulating in a population at the same time, can reshuffle their genes and create a new virus, one capable of infecting many more people, according to a new study in the open-access journal PLoS Biology. This finding may help scientists make better predictions about which viral strains will attack during upcoming flu seasons and design more effective flu vaccines.



In the first large-scale effort to sequence the flu genome, Edward Holmes, David Lipman, and colleagues examined the genomes of 156 influenza A viruses (serotype H3N2) collected by New York State public health officials between 1999 and 2004. "We found that there are co-circulating minor variants that are not infecting many people," says Lipman. "One of these can become the next epidemic strain."

These co-circulating viruses can exchange genes in a way that creates novel, epidemiologically significant strains--a process that can occur when someone is infected simultaneously by more than one strain. The genetic reshuffling demonstrated in this study is the first to examine in detail a reassortment event from a persistently cocirculating minor strain to a previously dominant strain leading to an epidemiologically significant outcome--the emergence of the "Fujian" strain in the 2003-2004 flu season.


The Institute for Genomic Research, with funding from the National Institute for Allergy and Infectious Diseases, sequenced the genomes of the collected flu viruses. Examining these sequences, Holmes et al. found that a relatively uncommon strain of virus contributed its hemagglutinin gene (a highly variable viral protein that must be recognized by the host’s immune defense system) to a virus common during the previous year. The reassorted virus suddenly became capable of infecting thousands. "The key thing here is that the general notion of epidemic flu is that there’s a series of successions by variants of the flu we got the previous year." But the new study shows that persistently cocirculating minor strains--which might be accumulating mutations with little obvious epidemiological consequences--can suddenly cause an epidemic with just one or two more mutations.

These results suggest that "the potential diversity is greater than we thought," says Lipman. "We need to have more comprehensive information on the entire genome [and] enough samples from around the world," he adds, to find the benign virus strain that will become next season’s scourge. The more genomes scientists collect--and the more refined the tools of genomics become--the greater the chances of developing more effective vaccines.

Paul Ocampo | EurekAlert!
Further information:
http://www.plosbiology.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>