Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved statistical tools reveal many linked loci

26.07.2005


High-throughput genotyping and expression profiling of a recombinant strain of yeast. (Photo: Storey et al.)


An innovative new statistical method, described in the open-access journal PLoS Biology, streamlines the computation required to identify all the potential locations in the genome that influence a particular physical trait, or phenotype. Thanks to the new method developed by John Storey, Joshua M. Akey, and Leonid Kruglyak, researchers have a more efficient genome-mining technique to help them identify all the genomic elements that produce specific traits. In brewer’s yeast alone, Storey and colleagues found that 37% of gene expression traits link to two loci, or positions in the genome.

"We were interested in being able to find combinations of genes that affect the phenotype," says Kruglyak. "It’s generally thought that most traits of interest have a complex underlying genetic basis, but it’s generally been pretty difficult to get at those." Typically, researchers might be able to find only one of the genetic factors, even though more than one genetic location contributes to the observed trait, such as blood pressure or cell growth.

The new statistical method bypasses the previously overwhelming computations needed to puzzle together the myriad elements that influence gene expression throughout an entire genome. And unlike earlier approaches to understanding how multiple loci interact, the new technique can distinguish between a group of genes with a linked subset and a group of genes with "joint linkage," where each gene site links to another.



"In some ways, it looks like you’re complicating a problem because you’re looking at thousands of genes instead of one trait," says Kruglyak. In reality, the method creates statistical conclusions that are more precise, he explains, because you’re using so much data.

Storey et al. compared their method to another statistical method, called two-dimensional linkage analysis, which tests for linkage between all pairs of a large set of genomic marker sites. The authors found that two-dimensional analysis is not only more computationally demanding than their new method, but also generates ambiguous results because it can be difficult to distinguish whether one or both of the loci being tested are responsible for altered expression levels. This problem grows exponentially with each added test site. This approach also failed to reveal that hierarchical relationships between two genomic locations control about one in seven yeast expression traits¡Xwhich Storey et al. discovered using their method.

Although the group studied yeast, their method can be applied to more complex organisms to search for even larger numbers of linked loci and to provide insights into the many interlocking pathways that make up the gene regulatory network.

Paul Ocampo | EurekAlert!
Further information:
http://www.plosbiology.org
http://www.plos.org

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>