Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify genes associated with lung transplant rejection

14.07.2005


Could mean new test, treatments

Researchers at the San Francisco VA Medical Center (SFVAMC) and the University of California, San Francisco (UCSF) have identified six genes associated with lymphocytic bronchitis, which is thought to lead to obliterative bronchitis (OB), the most common cause of long-term failure of transplanted lungs.

The researchers hope their results will lead to an earlier, more sensitive, and more accurate standard test for chronic lung rejection, as well as greater understanding of the rejection process.



The study is being published in the September 2005 issue of the Journal of Heart and Lung Transplantation, currently available online.

In obliterative bronchitis, scar tissue forms in breathing passages of the transplanted lung, narrowing them and eventually making it impossible for the recipient to breathe. The exact cause is unknown, but it is believed to be related to rejection of the lung by the recipient’s body.

"For lung transplant patients, the biggest barrier to long-term survival is control of rejection," says principal investigator George Caughey, MD, head of Pulmonary and Critical Care Medicine at SFVAMC. "If we know rejection is occurring, we can adjust the patient’s medication to try and prevent it. But the problem with lung transplants is that it’s hard to detect chronic rejection." Currently, he says, OB is best detected through a breathing test--but by the time the disease has a perceptible impact on the patient’s ability to breathe, it’s often too late to treat effectively.

Caughey and his fellow researchers studied lung biopsy samples from 22 lung transplant patients, with the goal of detecting genes and gene products associated with inflammation and formation of scar tissue in breathing passages. Using a customized version of a conventional laboratory technique, they found that they were able to look at hundreds of gene products simultaneously in lung tissue samples only a few millimeters across. "That was our first achievement: being able to accurately measure that many genes in small samples," notes Caughey, who is also a professor of medicine at UCSF. "We succeeded way beyond our expectations."

The researchers then correlated the genetic test results with results from microscopic pathology examinations, tissue cultures, X-rays, CT scans, and breathing tests in each patient. They identified six genes that correlate with lymphocytic bronchitis, potentially opening the way to a genetic test that would identify OB before it manifests. "The beauty of this approach is that it could be applied in a regular laboratory," Caughey says.

However, he cautions, "we need to validate this data in a larger, separate set of patients to prove that these biomarker genes actually work. And we’re testing that now." Currently, Caughey’s research team is studying biopsy samples from more than 100 UCSF lung transplant patients, who regularly undergo biopsies as part of standard follow-up care.

Another potential benefit of the research, predicts Caughey, will be a better understanding of lung rejection at the genetic level. In turn, he believes, this could lead to the development of medications that directly target genes responsible for the scarring process in the lung, instead of anti-rejection drugs that broadly compromise the immune system, which are the major tools currently available to fight lung rejection.

Co-authors of the study were Xiang Xu, MD, PhD, Jeffrey A. Golden, MD, Gregory Dolganov, PhD, Kirk D. Jones, MD, Samantha Donnelly, PhD, and Timothy Weaver, Bsc, all of UCSF.

Steve Tokar | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>