Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea jelly uses glowing red lures to catch fish

08.07.2005


This newly discovered deep-sea siphonophore is about 45 cm (18 inches) long. The upper half of the colony consists of swimming bells that pulse like jellyfish to keep the colony moving through the water. The lower half carries hundreds of pale white stinging tentacles, which are used to capture small deep-sea fishes.
Image: (c) 2003 MBARI


This photograph shows the newly discovered siphonophore’s tentilla—tiny filaments that branch off the main tentacles. Each tentilla contains thousands of stinging cells. The red lures are on separate stalks, which move up and down, causing the lures to wiggle like swimming copepods (a typical food of small midwater fishes).
Image: Steven Haddock (c) 2004 MBARI


As successful fishermen know, if you want to catch fish, you have to use the right bait or lure. This is true even in the deep sea, where scientists recently discovered a new species of jelly that attracts fish by wiggling hundreds of glowing red lures. This is the first time any marine invertebrate has been found to use a bioluminescent lure or to display red bioluminescence. This discovery is described in an article written by Steven Haddock of the Monterey Bay Aquarium Research Institute (MBARI), along with several coauthors, in the July 8, 2005 issue of Science magazine.

It has been estimated that about 90 percent of deep-sea animals are bioluminescent. Yet in many cases, scientists do not know how these animals benefit from the energy-intensive process of producing their own light. Some jellies use bioluminescence as a defense—they glow when disturbed in order to light up their predators, making their attackers vulnerable to even larger animals. A few deep-sea fishes and squids have glowing organs that look like lures, but even these animals have never been observed actually using their glowing organs to capture prey.

MBARI marine biologist Steven Haddock has studied glowing marine animals for over a decade, focusing on gelatinous animals such the siphonophores described in his recent article. Related to the typical round "jellyfish" that sometimes wash up on beaches, siphonophores are colonial animals, arranged in chains that in some species can be dozens of meters long. The members of a colony specialize at different tasks. Some form swimming bells, which pulse slowly, pulling the colony through the water like a long, fluid freight train. Others specialize in feeding, and sport stinging tentacles.



Almost all siphonophores are bioluminescent, but scientists know little about why and how they glow. Siphonophore colonies are notoriously difficult to study—they often break into pieces when disturbed or captured. For this reason, Haddock spent hundreds of hours using MBARI’s remotely operated vehicles (ROVs) to observe siphonophores in their native habitat, thousands of meters below the sea surface.

The siphonophore featured in Haddock’s article (which is an unnamed species in the genus Erenna) lives at depths of 1,600 to 2,300 meters, where fish are few and far between. For this reason, Haddock was surprised to observe small fish in their guts. He found himself wondering how these jellies could capture enough fish to survive in their sparsely inhabited environment. Examining the siphonophores under the microscope, he discovered that interspersed among their stinging tentacles were thin rod-like structures. These "tentilla" were tipped with red, glowing blobs.

Several lines of evidence eventually led Haddock and his coauthors to the conclusion that these red blobs served as lures for small deep sea fish. Their first clue lay in the siphonophore’s behavior. Jellies that use bioluminescence for self defense tend to have lights distributed all around their body, which flash brightly when disturbed (the "burglar alarm effect"). In contrast, the Erenna siphonophores kept their bioluminescence very localized and under tight control, suggesting that their lights had an entirely different function.

Continuing his microscope work, Haddock found more specific clues—the red, glowing blobs were shaped remarkably like the bodies of deep-sea copepods, a major food item for small deep-sea fish. Furthermore, the tentilla flicked back and forth repeatedly so that the glowing lures darted through the water just like swimming copepods. Finally, at least one siphonophore’s digestive system contained both fish and lures, suggesting that the lures were ingested along with the fish.

Haddock sees these glowing lures as Erenna’s way of adapting to a difficult environment. As he put it, "Most siphonophores set a big web of tentacles to catch animals that happen to swim by. But this jelly doesn’t deploy its tentacles very far. In an environment where fish are rare, it uses deception to attract fish instead of casting a wide net to capture them."

After discovering lures on this new species of siphonophore, Haddock and his coauthors looked at several related species and noticed similar glowing structures. He believes that these structures also serve as lures, but were overlooked or misinterpreted by previous researchers. He explains, "This discovery was a big paradigm shift for us—most jellies were thought to use bioluminescence for defense, but once we saw this, it made us realize that the same thing was happening in other species."

Erenna’s glowing red lures may also force scientists to take a new look at the role of red light in the deep sea. Red bioluminescence is extremely rare, and the prevailing view among marine biologists has been that most deep-sea animals cannot detect red light at all. However, because deep-sea fishes are so hard to bring to the surface intact, we know very little about their physiology. Haddock’s work suggests that some deep-sea fishes may not only see red light, but routinely use it in finding food.

Kim Fulton-Bennett | EurekAlert!
Further information:
http://www.mbari.org

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>