Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea jelly uses glowing red lures to catch fish

08.07.2005


This newly discovered deep-sea siphonophore is about 45 cm (18 inches) long. The upper half of the colony consists of swimming bells that pulse like jellyfish to keep the colony moving through the water. The lower half carries hundreds of pale white stinging tentacles, which are used to capture small deep-sea fishes.
Image: (c) 2003 MBARI


This photograph shows the newly discovered siphonophore’s tentilla—tiny filaments that branch off the main tentacles. Each tentilla contains thousands of stinging cells. The red lures are on separate stalks, which move up and down, causing the lures to wiggle like swimming copepods (a typical food of small midwater fishes).
Image: Steven Haddock (c) 2004 MBARI


As successful fishermen know, if you want to catch fish, you have to use the right bait or lure. This is true even in the deep sea, where scientists recently discovered a new species of jelly that attracts fish by wiggling hundreds of glowing red lures. This is the first time any marine invertebrate has been found to use a bioluminescent lure or to display red bioluminescence. This discovery is described in an article written by Steven Haddock of the Monterey Bay Aquarium Research Institute (MBARI), along with several coauthors, in the July 8, 2005 issue of Science magazine.

It has been estimated that about 90 percent of deep-sea animals are bioluminescent. Yet in many cases, scientists do not know how these animals benefit from the energy-intensive process of producing their own light. Some jellies use bioluminescence as a defense—they glow when disturbed in order to light up their predators, making their attackers vulnerable to even larger animals. A few deep-sea fishes and squids have glowing organs that look like lures, but even these animals have never been observed actually using their glowing organs to capture prey.

MBARI marine biologist Steven Haddock has studied glowing marine animals for over a decade, focusing on gelatinous animals such the siphonophores described in his recent article. Related to the typical round "jellyfish" that sometimes wash up on beaches, siphonophores are colonial animals, arranged in chains that in some species can be dozens of meters long. The members of a colony specialize at different tasks. Some form swimming bells, which pulse slowly, pulling the colony through the water like a long, fluid freight train. Others specialize in feeding, and sport stinging tentacles.



Almost all siphonophores are bioluminescent, but scientists know little about why and how they glow. Siphonophore colonies are notoriously difficult to study—they often break into pieces when disturbed or captured. For this reason, Haddock spent hundreds of hours using MBARI’s remotely operated vehicles (ROVs) to observe siphonophores in their native habitat, thousands of meters below the sea surface.

The siphonophore featured in Haddock’s article (which is an unnamed species in the genus Erenna) lives at depths of 1,600 to 2,300 meters, where fish are few and far between. For this reason, Haddock was surprised to observe small fish in their guts. He found himself wondering how these jellies could capture enough fish to survive in their sparsely inhabited environment. Examining the siphonophores under the microscope, he discovered that interspersed among their stinging tentacles were thin rod-like structures. These "tentilla" were tipped with red, glowing blobs.

Several lines of evidence eventually led Haddock and his coauthors to the conclusion that these red blobs served as lures for small deep sea fish. Their first clue lay in the siphonophore’s behavior. Jellies that use bioluminescence for self defense tend to have lights distributed all around their body, which flash brightly when disturbed (the "burglar alarm effect"). In contrast, the Erenna siphonophores kept their bioluminescence very localized and under tight control, suggesting that their lights had an entirely different function.

Continuing his microscope work, Haddock found more specific clues—the red, glowing blobs were shaped remarkably like the bodies of deep-sea copepods, a major food item for small deep-sea fish. Furthermore, the tentilla flicked back and forth repeatedly so that the glowing lures darted through the water just like swimming copepods. Finally, at least one siphonophore’s digestive system contained both fish and lures, suggesting that the lures were ingested along with the fish.

Haddock sees these glowing lures as Erenna’s way of adapting to a difficult environment. As he put it, "Most siphonophores set a big web of tentacles to catch animals that happen to swim by. But this jelly doesn’t deploy its tentacles very far. In an environment where fish are rare, it uses deception to attract fish instead of casting a wide net to capture them."

After discovering lures on this new species of siphonophore, Haddock and his coauthors looked at several related species and noticed similar glowing structures. He believes that these structures also serve as lures, but were overlooked or misinterpreted by previous researchers. He explains, "This discovery was a big paradigm shift for us—most jellies were thought to use bioluminescence for defense, but once we saw this, it made us realize that the same thing was happening in other species."

Erenna’s glowing red lures may also force scientists to take a new look at the role of red light in the deep sea. Red bioluminescence is extremely rare, and the prevailing view among marine biologists has been that most deep-sea animals cannot detect red light at all. However, because deep-sea fishes are so hard to bring to the surface intact, we know very little about their physiology. Haddock’s work suggests that some deep-sea fishes may not only see red light, but routinely use it in finding food.

Kim Fulton-Bennett | EurekAlert!
Further information:
http://www.mbari.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>