Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify novel gene driving the growth and survival of melanoma cells

07.07.2005


Overcopied pigment-cell gene may serve as target for future drug attacks



A team of researchers led by scientists at Dana-Farber Cancer Institute have discovered a genetic abnormality in the cells of some advanced melanoma patients that worsens their chances of survival, but also might be a target of future drug attack against the dangerous skin cancer.

Dana-Farber’s Levi Garraway, MD, PhD, and William Sellers, MD, the paper’s first and senior authors, and their colleagues will report their findings in the July 7 issue of the journal Nature.


"By pinpointing the abnormally multiplied MITF oncogene, we may be able to develop better diagnostic and prognostic tools as well as provide a target for highly specific therapies for metastatic melanoma patients who have this overcopied gene," explains Sellers, who also holds an appointment with the Broad Institute of Harvard and MIT and with Harvard Medical School.

Melanoma accounts for just six percent of diagnosed skin cancer cases in the United States, but it is the deadliest, causing three quarters of all skin cancer related deaths. The American Cancer Society estimates that 7,700 melanoma patients will die this year.

Caused mainly by sun exposure, melanoma has been increasing rapidly over the past several decades. Nearly 60,000 new cases are expected in 2005. Most cases caught early can be cured, but if melanoma cells penetrate the skin deeply, the cancer is highly prone to spread with life-threatening consequences despite treatment with surgery, chemotherapy and radiation.

The researchers used single nucleotide polymorphism (SNP) array technology, which focuses on the building blocks of individual genes, to identify regions of chromosomes where genes were either left out or multiplied over and over – mistakes that are often associated with cancer.

In studying cells from primary and metastatic melanoma tumors, the scientists observed as many as 13 extra copies of the MITF gene in 10 percent of primary melanomas and 21 percent of metastatic tumors.

When they checked the treatment outcomes of the patients from whom the tumor samples were taken, researchers found poorer 5-year survival rates among patients whose metasases contained the overcopied or "amplified" MITF gene.

Abnormal amplification of the MITF gene was found to be associated with other genetic changes as well. They included mutations in a gene, BRAF, previously found in melanoma cells, and silencing of p16, a "tumor-suppressor" gene that normally keeps cells from dividing too rapidly and causing cancer.

Aside from its clinical potential, the scientists say the finding advances the understanding of cancer: It highlights a previously unknown mechanism by which a tumor can become "addicted" to an oncogene that, in its normal form, plays a role in developing and maintaining tissues. That is, the tumor cannot survive without a high level of production of the oncogene’s protein. Dana-Farber’s David E. Fisher, MD, PhD, an author on the paper, has previously shown that the MITF gene normally regulates the development of the skin’s pigment-producing cells, or melanocytes. It appears the extra dosage of MITF protein spurs the melanocytes into malignant growth and maintains the tumor’s survival.

"We might be able to treat these metastatic melanomas by targeting the MITF gene or protein, alone or in combination with drugs that block BRAF," says Sellers. "We know that when MITF activity is reduced, melanoma cells become more vulnerable to chemotherapy drugs." However, he said, MITF is a "transcription factor" that controls the expression of other genes, and these factors have proven difficult to manipulate with drugs.

The papers other co-authors are Hans R. Widlund, PhD, Dana-Farber; Mark A. Rubin, MD, Danny A. Milner, MD, Scott R. Granter, MD, and Charles Lee, PhD, Brigham and Women’s Hospital; Gad A. Getz, Broad Institute of Harvard and MIT; David L. Rimm, MD, PhD, and Aaron Berger, Yale University School of Medicine; Sridhar Ramaswamy, MD, Broad Institute of Harvard and MIT and Massachusetts General Hospital; Jinyan Du, PhD, Dana-Farber and Broad Institute of Harvard and MIT; Stephan N. Wagner, MD, Medical University of Vienna in Austria; Cheng Li, PhD, Dana-Farber and Harvard School of Public Health; Todd R. Golub, MD, and Matthew Meyerson, MD, Dana-Farber, Brigham and Women’s Hospital and the Broad Institute of Harvard and MIT.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>