Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify novel gene driving the growth and survival of melanoma cells

07.07.2005


Overcopied pigment-cell gene may serve as target for future drug attacks



A team of researchers led by scientists at Dana-Farber Cancer Institute have discovered a genetic abnormality in the cells of some advanced melanoma patients that worsens their chances of survival, but also might be a target of future drug attack against the dangerous skin cancer.

Dana-Farber’s Levi Garraway, MD, PhD, and William Sellers, MD, the paper’s first and senior authors, and their colleagues will report their findings in the July 7 issue of the journal Nature.


"By pinpointing the abnormally multiplied MITF oncogene, we may be able to develop better diagnostic and prognostic tools as well as provide a target for highly specific therapies for metastatic melanoma patients who have this overcopied gene," explains Sellers, who also holds an appointment with the Broad Institute of Harvard and MIT and with Harvard Medical School.

Melanoma accounts for just six percent of diagnosed skin cancer cases in the United States, but it is the deadliest, causing three quarters of all skin cancer related deaths. The American Cancer Society estimates that 7,700 melanoma patients will die this year.

Caused mainly by sun exposure, melanoma has been increasing rapidly over the past several decades. Nearly 60,000 new cases are expected in 2005. Most cases caught early can be cured, but if melanoma cells penetrate the skin deeply, the cancer is highly prone to spread with life-threatening consequences despite treatment with surgery, chemotherapy and radiation.

The researchers used single nucleotide polymorphism (SNP) array technology, which focuses on the building blocks of individual genes, to identify regions of chromosomes where genes were either left out or multiplied over and over – mistakes that are often associated with cancer.

In studying cells from primary and metastatic melanoma tumors, the scientists observed as many as 13 extra copies of the MITF gene in 10 percent of primary melanomas and 21 percent of metastatic tumors.

When they checked the treatment outcomes of the patients from whom the tumor samples were taken, researchers found poorer 5-year survival rates among patients whose metasases contained the overcopied or "amplified" MITF gene.

Abnormal amplification of the MITF gene was found to be associated with other genetic changes as well. They included mutations in a gene, BRAF, previously found in melanoma cells, and silencing of p16, a "tumor-suppressor" gene that normally keeps cells from dividing too rapidly and causing cancer.

Aside from its clinical potential, the scientists say the finding advances the understanding of cancer: It highlights a previously unknown mechanism by which a tumor can become "addicted" to an oncogene that, in its normal form, plays a role in developing and maintaining tissues. That is, the tumor cannot survive without a high level of production of the oncogene’s protein. Dana-Farber’s David E. Fisher, MD, PhD, an author on the paper, has previously shown that the MITF gene normally regulates the development of the skin’s pigment-producing cells, or melanocytes. It appears the extra dosage of MITF protein spurs the melanocytes into malignant growth and maintains the tumor’s survival.

"We might be able to treat these metastatic melanomas by targeting the MITF gene or protein, alone or in combination with drugs that block BRAF," says Sellers. "We know that when MITF activity is reduced, melanoma cells become more vulnerable to chemotherapy drugs." However, he said, MITF is a "transcription factor" that controls the expression of other genes, and these factors have proven difficult to manipulate with drugs.

The papers other co-authors are Hans R. Widlund, PhD, Dana-Farber; Mark A. Rubin, MD, Danny A. Milner, MD, Scott R. Granter, MD, and Charles Lee, PhD, Brigham and Women’s Hospital; Gad A. Getz, Broad Institute of Harvard and MIT; David L. Rimm, MD, PhD, and Aaron Berger, Yale University School of Medicine; Sridhar Ramaswamy, MD, Broad Institute of Harvard and MIT and Massachusetts General Hospital; Jinyan Du, PhD, Dana-Farber and Broad Institute of Harvard and MIT; Stephan N. Wagner, MD, Medical University of Vienna in Austria; Cheng Li, PhD, Dana-Farber and Harvard School of Public Health; Todd R. Golub, MD, and Matthew Meyerson, MD, Dana-Farber, Brigham and Women’s Hospital and the Broad Institute of Harvard and MIT.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>