Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify novel gene driving the growth and survival of melanoma cells

07.07.2005


Overcopied pigment-cell gene may serve as target for future drug attacks



A team of researchers led by scientists at Dana-Farber Cancer Institute have discovered a genetic abnormality in the cells of some advanced melanoma patients that worsens their chances of survival, but also might be a target of future drug attack against the dangerous skin cancer.

Dana-Farber’s Levi Garraway, MD, PhD, and William Sellers, MD, the paper’s first and senior authors, and their colleagues will report their findings in the July 7 issue of the journal Nature.


"By pinpointing the abnormally multiplied MITF oncogene, we may be able to develop better diagnostic and prognostic tools as well as provide a target for highly specific therapies for metastatic melanoma patients who have this overcopied gene," explains Sellers, who also holds an appointment with the Broad Institute of Harvard and MIT and with Harvard Medical School.

Melanoma accounts for just six percent of diagnosed skin cancer cases in the United States, but it is the deadliest, causing three quarters of all skin cancer related deaths. The American Cancer Society estimates that 7,700 melanoma patients will die this year.

Caused mainly by sun exposure, melanoma has been increasing rapidly over the past several decades. Nearly 60,000 new cases are expected in 2005. Most cases caught early can be cured, but if melanoma cells penetrate the skin deeply, the cancer is highly prone to spread with life-threatening consequences despite treatment with surgery, chemotherapy and radiation.

The researchers used single nucleotide polymorphism (SNP) array technology, which focuses on the building blocks of individual genes, to identify regions of chromosomes where genes were either left out or multiplied over and over – mistakes that are often associated with cancer.

In studying cells from primary and metastatic melanoma tumors, the scientists observed as many as 13 extra copies of the MITF gene in 10 percent of primary melanomas and 21 percent of metastatic tumors.

When they checked the treatment outcomes of the patients from whom the tumor samples were taken, researchers found poorer 5-year survival rates among patients whose metasases contained the overcopied or "amplified" MITF gene.

Abnormal amplification of the MITF gene was found to be associated with other genetic changes as well. They included mutations in a gene, BRAF, previously found in melanoma cells, and silencing of p16, a "tumor-suppressor" gene that normally keeps cells from dividing too rapidly and causing cancer.

Aside from its clinical potential, the scientists say the finding advances the understanding of cancer: It highlights a previously unknown mechanism by which a tumor can become "addicted" to an oncogene that, in its normal form, plays a role in developing and maintaining tissues. That is, the tumor cannot survive without a high level of production of the oncogene’s protein. Dana-Farber’s David E. Fisher, MD, PhD, an author on the paper, has previously shown that the MITF gene normally regulates the development of the skin’s pigment-producing cells, or melanocytes. It appears the extra dosage of MITF protein spurs the melanocytes into malignant growth and maintains the tumor’s survival.

"We might be able to treat these metastatic melanomas by targeting the MITF gene or protein, alone or in combination with drugs that block BRAF," says Sellers. "We know that when MITF activity is reduced, melanoma cells become more vulnerable to chemotherapy drugs." However, he said, MITF is a "transcription factor" that controls the expression of other genes, and these factors have proven difficult to manipulate with drugs.

The papers other co-authors are Hans R. Widlund, PhD, Dana-Farber; Mark A. Rubin, MD, Danny A. Milner, MD, Scott R. Granter, MD, and Charles Lee, PhD, Brigham and Women’s Hospital; Gad A. Getz, Broad Institute of Harvard and MIT; David L. Rimm, MD, PhD, and Aaron Berger, Yale University School of Medicine; Sridhar Ramaswamy, MD, Broad Institute of Harvard and MIT and Massachusetts General Hospital; Jinyan Du, PhD, Dana-Farber and Broad Institute of Harvard and MIT; Stephan N. Wagner, MD, Medical University of Vienna in Austria; Cheng Li, PhD, Dana-Farber and Harvard School of Public Health; Todd R. Golub, MD, and Matthew Meyerson, MD, Dana-Farber, Brigham and Women’s Hospital and the Broad Institute of Harvard and MIT.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>