Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic on-off switches pinpointed in human genome

30.06.2005


Map of gene control regions provides tool for understanding cells’ different roles



In another step to decipher information in the human genome, scientists have discovered the location and sequence of over 10,000 DNA regions that function as genetic on-off switches, or "promoters" in human fibroblasts. Fibroblasts are relatively generic, easily maintained, human cells that form connective tissues throughout the body. By knowing the specific sequences of DNA that control the nearly 8,000 active genes in fibroblasts, scientists can tease apart the biochemical regulation system these cells use to turn genes on and off during normal growth.

The so-called "promoter map" will not only provide new insight into how genes are controlled in fibroblasts, but will also serve as a framework for analysis of genetic control in other human cell types, tissues and perhaps organs.


The project, detailed in a June 29 electronic edition of the journal, Nature, is a collaboration headed by Bing Ren at University of California, San Diego, working with scientists at University of California, Los Angeles (UCLA) and the company Nimblegen, Inc., in Madison, Wisc.

Understanding the on-off control mechanisms will further understanding of how a cell is programmed to perform specialized functions. Nearly all cells in the human body have the same genetic information. But they don’t all express it at the same time. Cells in the heart, for example, express different information than do cells of the liver or brain. Controlled gene activity at certain times determines what function the cell will have in the body.

To accomplish the genome-wide promoter survey, Bing Ren and his co-worker, Tae Hoon Kim, conceived and designed a novel experimental procedure based on cutting-edge microarray technology. UCLA’s Yingnian Wu and Ming Zheng developed sophisticated computer algorithms to process the massive amount of data collected from the experiments.

The researchers report that multiple promoters often control a single gene in parallel, adding another layer to an already complex genetic regulation mechanism. They also discovered promoters in front of DNA sequences not previously recognized as genes. The significance of that finding will be determined in future studies.

Randy Vines | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>