Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic on-off switches pinpointed in human genome

30.06.2005


Map of gene control regions provides tool for understanding cells’ different roles



In another step to decipher information in the human genome, scientists have discovered the location and sequence of over 10,000 DNA regions that function as genetic on-off switches, or "promoters" in human fibroblasts. Fibroblasts are relatively generic, easily maintained, human cells that form connective tissues throughout the body. By knowing the specific sequences of DNA that control the nearly 8,000 active genes in fibroblasts, scientists can tease apart the biochemical regulation system these cells use to turn genes on and off during normal growth.

The so-called "promoter map" will not only provide new insight into how genes are controlled in fibroblasts, but will also serve as a framework for analysis of genetic control in other human cell types, tissues and perhaps organs.


The project, detailed in a June 29 electronic edition of the journal, Nature, is a collaboration headed by Bing Ren at University of California, San Diego, working with scientists at University of California, Los Angeles (UCLA) and the company Nimblegen, Inc., in Madison, Wisc.

Understanding the on-off control mechanisms will further understanding of how a cell is programmed to perform specialized functions. Nearly all cells in the human body have the same genetic information. But they don’t all express it at the same time. Cells in the heart, for example, express different information than do cells of the liver or brain. Controlled gene activity at certain times determines what function the cell will have in the body.

To accomplish the genome-wide promoter survey, Bing Ren and his co-worker, Tae Hoon Kim, conceived and designed a novel experimental procedure based on cutting-edge microarray technology. UCLA’s Yingnian Wu and Ming Zheng developed sophisticated computer algorithms to process the massive amount of data collected from the experiments.

The researchers report that multiple promoters often control a single gene in parallel, adding another layer to an already complex genetic regulation mechanism. They also discovered promoters in front of DNA sequences not previously recognized as genes. The significance of that finding will be determined in future studies.

Randy Vines | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>