Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Many areas of scientific research will benefit from investment of £6M to develop the UK’s large-scale research facilities.

30.06.2005


Scientists from the UK and around the world will benefit from £6M grant awards for large-scale science research facilities. This significant investment will ensure that the world-leading Council for Central Laboratories of the Research Councils’ (CCLRC) large facilities will remain internationally competitive and capable of providing the technological infrastructure necessary for UK and international scientists to probe materials deeper, faster and more accurately than ever before.



Eight research grants have been awarded to collaborative teams led by academics from UK universities and the CCLRC. Awards have been determined by the peer-reviewed quality of the proposals to create new research opportunities and to introduce new research communities to the CCLRC facilities – the Central Laser Facility (CLF), the ISIS pulsed neutron and muon source and the Synchrotron Radiation Source (SRS).

The largest award is £2m for the development of a new muon spectrometer on the ISIS facility. “Muons are a fascinating way of exploring materials. They only live for two-millionths of a second, but that’s long enough to give us unique insights into atoms and molecules,” said project leader Dr. Philip King from the CCLRC ISIS facility. “The new instrument will significantly widen the range of experiments we can make on new organic materials and on semiconductors used by the electronics industry.”


A grant of £1.8M has been awarded in partnership with the Biotechnology and Biological Science Research Council (BBSRC) to develop a novel laser spectrometer which will enable researchers to investigate DNA repair, protein folding and offer a new approach to detecting cancerous and pre-cancerous cells.

Colin Miles from the Biotechnology and Biological Sciences Research Council (BBSRC) said “This technique will enable CCLRC expertise in material and physical sciences to be extended to the BBSRC bioscience and medical communities. This builds on steps being taken by CCLRC and BBSRC to work in partnership to increase the amount of bioscience research undertaken on the facilities”.

Four of the successful grants will be used to develop new instruments on the SRS in advance of the transfer of science programmes to the Diamond Light Source. “These developments will ensure that the SRS can continue to provide scientists with state-of-the-art instrumentation during this very important overlap period between the closure of the SRS and the start up of Diamond”, explained Professor Michael Chesters, Director Synchrotron Science.

This is the second year that CCLRC has awarded funds in its Facility Development Grant Award scheme. Given the quality of proposals received and demand from the research community, the CCLRC intends to build on initial success and continue the scheme into the foreseeable future.

Jacky Hutchinson | alfa
Further information:
http://www.cclrc.ac.uk/Activity/FacilityDevelopment
http://www.cclrc.ac.uk

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>