Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-powered gene profiles provide clues to genes involved in common form of lung cancer

28.06.2005


Using technology that makes it possible to zoom in on smaller sections of cell chromosomes than ever before, researchers at Dana-Farber Cancer Institute have identified nearly 100 chromosome regions where genes are either over-copied or missing in non-small cell lung cancer. The findings provide new clues about the location of genes potentially involved in the most common type of lung cancer –– and one of the deadliest of all malignancies –– and a range of possible targets for future therapies.



The study will be reported in the Proceedings of the National Academy of Sciences’ Online Early Edition the week of June 27.

"Previous studies have identified a small set of mutated, or abnormal, genes that are associated with non-small cell lung cancer," says the study’s lead author, Giovanni Tonon, MD, PhD, of Dana-Farber. "But we also know that the chromosomes of these cells contain a large number of irregular regions –– where genes have either been deleted or copied over and over again –– which suggests that a large number of cancer genes remain to be discovered. The purpose of this study was to locate the likeliest candidates."


The study is part of a renewed effort by scientists worldwide to uncover the basic biology of lung cancer, the number one cause of cancer-related deaths in the United States. Non-small cell lung cancer (NSCLC) accounts for about 75 percent of all lung cancers and is responsible for nearly 120,000 deaths in this country annually. It is one of the most difficult cancers to treat, with only 15 percent of patients surviving more than five years after diagnosis.

In recent years, technological advances have brought new precision to the search for gene abnormalities associated with cancer. In the current study, Dana-Farber researchers used two forms of microarray technology to bring such abnormalities into focus.

Using tumor samples from 44 NSCLC patients and 34 laboratory-grown lines of NSCLC cells, investigators scanned the cells with high-resolution cDNA (oligonucleotide) microarray equipment to find chromosome regions containing unusual numbers of gene copies. The technology, developed in conjunction with Agilent Technologies, was 50-100 times more powerful than had been used on NSCLC cells in the past, enabling researchers to identify irregular sites more precisely. They found a total of 93 regions, each containing about 11 genes, where gene deletions or over-copying had occurred.

Researchers re-analyzed the tumor and cell samples with the latest oligonucleotide expression microarray technology from Affymetrix, which indicates if individual genes are active. Using this data, they scanned the genes in these 93 regions to see if any were missing (and inactive) or present in unusually large amounts (and therefore highly active) in deleted or overcopied regions, respectively. This enabled them to narrow the search for genes that were the targets of the irregular regions. Intriguingly, all of the genes already known to be involved in NSCLC reside within the abnormal regions identified by the Dana-Farber team.

"This is compelling evidence that we’re on the right track," says the study’s other first author, Kwok-Kin Wong, MD, PhD, of Dana-Farber. "It’s likely that the genetic mutations already linked to NSCLC constitute only a portion of all the genetic errors that drive the disease. Our work provides a good starting point for scientists looking for others."

As part of the study, investigators did microarray analyses on the two major subtypes of NSCLC, adenocarcinoma and squamous cell carcinoma, and found that their genomic profiles overlap in every area but one: squamous cell carcinomas contain an area of gene amplification, or over-copying, not found in adenocarcinomas. Among the few genes in that area is one called p63, which is known to play a role in the ability of skin cells to reproduce. The new finding raises the possibility that adenocarcinoma and squamous cell carcinoma arise from an error in the same cell type and are driven to malignancy by similar genetic routes, the study authors say.

Finally, the researchers compared their data for NSCLC with similar data for pancreatic cancer, and found that both diseases have some chromosomal irregularities in common, suggesting that in both disorders, some of the same genes may be driving the tumors.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu
http://www.pnas.org/papbyrecent.shtml

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>