Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-powered gene profiles provide clues to genes involved in common form of lung cancer

28.06.2005


Using technology that makes it possible to zoom in on smaller sections of cell chromosomes than ever before, researchers at Dana-Farber Cancer Institute have identified nearly 100 chromosome regions where genes are either over-copied or missing in non-small cell lung cancer. The findings provide new clues about the location of genes potentially involved in the most common type of lung cancer –– and one of the deadliest of all malignancies –– and a range of possible targets for future therapies.



The study will be reported in the Proceedings of the National Academy of Sciences’ Online Early Edition the week of June 27.

"Previous studies have identified a small set of mutated, or abnormal, genes that are associated with non-small cell lung cancer," says the study’s lead author, Giovanni Tonon, MD, PhD, of Dana-Farber. "But we also know that the chromosomes of these cells contain a large number of irregular regions –– where genes have either been deleted or copied over and over again –– which suggests that a large number of cancer genes remain to be discovered. The purpose of this study was to locate the likeliest candidates."


The study is part of a renewed effort by scientists worldwide to uncover the basic biology of lung cancer, the number one cause of cancer-related deaths in the United States. Non-small cell lung cancer (NSCLC) accounts for about 75 percent of all lung cancers and is responsible for nearly 120,000 deaths in this country annually. It is one of the most difficult cancers to treat, with only 15 percent of patients surviving more than five years after diagnosis.

In recent years, technological advances have brought new precision to the search for gene abnormalities associated with cancer. In the current study, Dana-Farber researchers used two forms of microarray technology to bring such abnormalities into focus.

Using tumor samples from 44 NSCLC patients and 34 laboratory-grown lines of NSCLC cells, investigators scanned the cells with high-resolution cDNA (oligonucleotide) microarray equipment to find chromosome regions containing unusual numbers of gene copies. The technology, developed in conjunction with Agilent Technologies, was 50-100 times more powerful than had been used on NSCLC cells in the past, enabling researchers to identify irregular sites more precisely. They found a total of 93 regions, each containing about 11 genes, where gene deletions or over-copying had occurred.

Researchers re-analyzed the tumor and cell samples with the latest oligonucleotide expression microarray technology from Affymetrix, which indicates if individual genes are active. Using this data, they scanned the genes in these 93 regions to see if any were missing (and inactive) or present in unusually large amounts (and therefore highly active) in deleted or overcopied regions, respectively. This enabled them to narrow the search for genes that were the targets of the irregular regions. Intriguingly, all of the genes already known to be involved in NSCLC reside within the abnormal regions identified by the Dana-Farber team.

"This is compelling evidence that we’re on the right track," says the study’s other first author, Kwok-Kin Wong, MD, PhD, of Dana-Farber. "It’s likely that the genetic mutations already linked to NSCLC constitute only a portion of all the genetic errors that drive the disease. Our work provides a good starting point for scientists looking for others."

As part of the study, investigators did microarray analyses on the two major subtypes of NSCLC, adenocarcinoma and squamous cell carcinoma, and found that their genomic profiles overlap in every area but one: squamous cell carcinomas contain an area of gene amplification, or over-copying, not found in adenocarcinomas. Among the few genes in that area is one called p63, which is known to play a role in the ability of skin cells to reproduce. The new finding raises the possibility that adenocarcinoma and squamous cell carcinoma arise from an error in the same cell type and are driven to malignancy by similar genetic routes, the study authors say.

Finally, the researchers compared their data for NSCLC with similar data for pancreatic cancer, and found that both diseases have some chromosomal irregularities in common, suggesting that in both disorders, some of the same genes may be driving the tumors.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu
http://www.pnas.org/papbyrecent.shtml

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>