Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visceral leishmaniasis : successful vaccine trial in dogs

28.06.2005


Visceral leishmaniasis, which is the most severe form of the leishmaniases, hits an annual total of 500 000 people, mostly in the developing countries. It is caused by the parasite Leishmania infantum. A flagellate protozoan, it uses as vector an insect resembling a midge, the sand fly, colonizing the intestine and then the salivary glands. The female insect feeds on mammals’ blood. It can thus pass the parasite on to humans by a single bite. Once in the blood stream, L. infantum passes into particular cells of the immune system, the macrophages. These eventually burst, releasing the parasites which move on to penetrate other cells. The infected subject suffers bouts of fever, anaemia, enlarged spleen and liver, and weight loss. In the absence of treatment, these clinical signs usually announce a fatal outcome.



The sand fly sucks blood from mammals other than humans. This is how, right around the Mediterranean rim, 5 million dogs, a proportion of from 1 to 42 % depending on the area, are affected by visceral leishmaniasis. These animals are thus a reservoir for these parasites, which continuously feed the mammal-sand fly-human cycle. In this context, development of a canine vaccine would help reduce the portion of the animal population infected. The risks of transmission of the disease to humans would in this way be indirectly reduced.

Up to now, several dog vaccines, mostly developed from whole dried parasites, have proved not to be really effective. A team from the IRD Montpellier research centre, working with the Rocher veterinary clinic (La Garde, Var, France) and the biopharmaceutical firm Bio Véto Test (La Seyne-Sur-Mer, Var), have recently produced and tested a new type of treatment, composed solely of antigen proteins excreted by the parasite (1). The first trials indicate that this would completely and lastingly protect dogs against the disease.


Twelve out of 18 dogs included in the study were treated with increasing doses of protein antigens excreted by the parasite (that is 50, 100, 200 micrograms) made up to a formula with an adjuvant. The other six received no treatment. Two injections at an interval of three weeks resulted in infection of all the animals with L. infantum. They were followed up for two years in order to monitor the progress of the disease. The mixture of parasite proteins proved to be especially effective, as 100% protection was obtained for the doses of 100 micrograms (six immunized dogs out of six) and 200 micrograms (three out of three).

The researchers also focused on the changes to the immune system brought on by the vaccination. Laboratory experiments showed that the effectiveness of the vaccine stems from the activation of certain cells of the immune system, the T lymphocytes of type Th1. These induce the infected macrophages to produce nitric oxide, highly toxic for cells. This process, which did not occur in the untreated dogs, thus enables macrophages to get rid of the parasites that are infecting them. The animal thus acquires long-term protection against visceral leishmaniasis.

Although this vaccine’s effectiveness has been shown only on a limited number of animals, it is a further step towards protection of dogs against this disease. These results, confirmed indeed by the first, highly encouraging, data from a large-scale clinical trial currently under way (phase III), are promising for efforts to reduce transmission of leishmaniasis to humans. They also point to new lines of investigation for elaborating a possible human vaccine. An integrated research project, involving several IRD groups (2), has just been set up in India, to work on this. It should lead to an assessment of the effectiveness of such a vaccine in humans.

(1) The finding of these proteins furthermore necessitated the development, achieved in 1992, of suitable culture media (patented), with the attached proteins removed. The media normally used ijn fact contain many protein-containing compounds (serumalbumins, albumins etc.) which prevent specific isolation of the proteins excreted by the parasite. References : Lemesre J.L., Blanc M.P., Grébaut P., Zilberfard V. et Carrière V. (1994). Culture continue de formes amastigotes de Leishmanies en condition axénique. Réalisation du cycle évolutif in vitro. Médecine et Armées, 22 (1), 99 and Merlen T, Sereno D, Brajon N. and Lemesre J.L. (1999). Leishmania Spp: completely defined medium without serum and macromolecules (CDM/LP) for the continuous in vitro cultivation of infective promastigote forms. Am. J. Trop. Med. Hyg., 60 (1), 41-50. Brevets : Lemesre J.L. (1993). "Procédé de culture in vitro de différents stades parasitaires obtenus et applications biologiques". Brevet français, FR n° 93 05779 ; Lemesre J.L. (1994)."Method for the culture in vitro of different stages of tissue parasites".Brevet international, PCT/FR N° 94/00577.

(2) The project, entitled « Study of the host and parasite factors determining the outcome of visceral leishmaniasis: application for prevention and treatment », involves research IRD units UR 08 « Trypanosome pathogenesis » and 165 « Genetics and evolution of infectious diseases », in conjunction with the Institute of Medical Sciences, Banares Hindu University, Varanasi, India.

Romain Loury/Marie Guillaume - DIC

Marie Guillaume | alfa
Further information:
http://www.ird.fr
http://www.ird.fr/fr/actualites/fiches/2005/fiche226.htm

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>