Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visceral leishmaniasis : successful vaccine trial in dogs

28.06.2005


Visceral leishmaniasis, which is the most severe form of the leishmaniases, hits an annual total of 500 000 people, mostly in the developing countries. It is caused by the parasite Leishmania infantum. A flagellate protozoan, it uses as vector an insect resembling a midge, the sand fly, colonizing the intestine and then the salivary glands. The female insect feeds on mammals’ blood. It can thus pass the parasite on to humans by a single bite. Once in the blood stream, L. infantum passes into particular cells of the immune system, the macrophages. These eventually burst, releasing the parasites which move on to penetrate other cells. The infected subject suffers bouts of fever, anaemia, enlarged spleen and liver, and weight loss. In the absence of treatment, these clinical signs usually announce a fatal outcome.



The sand fly sucks blood from mammals other than humans. This is how, right around the Mediterranean rim, 5 million dogs, a proportion of from 1 to 42 % depending on the area, are affected by visceral leishmaniasis. These animals are thus a reservoir for these parasites, which continuously feed the mammal-sand fly-human cycle. In this context, development of a canine vaccine would help reduce the portion of the animal population infected. The risks of transmission of the disease to humans would in this way be indirectly reduced.

Up to now, several dog vaccines, mostly developed from whole dried parasites, have proved not to be really effective. A team from the IRD Montpellier research centre, working with the Rocher veterinary clinic (La Garde, Var, France) and the biopharmaceutical firm Bio Véto Test (La Seyne-Sur-Mer, Var), have recently produced and tested a new type of treatment, composed solely of antigen proteins excreted by the parasite (1). The first trials indicate that this would completely and lastingly protect dogs against the disease.


Twelve out of 18 dogs included in the study were treated with increasing doses of protein antigens excreted by the parasite (that is 50, 100, 200 micrograms) made up to a formula with an adjuvant. The other six received no treatment. Two injections at an interval of three weeks resulted in infection of all the animals with L. infantum. They were followed up for two years in order to monitor the progress of the disease. The mixture of parasite proteins proved to be especially effective, as 100% protection was obtained for the doses of 100 micrograms (six immunized dogs out of six) and 200 micrograms (three out of three).

The researchers also focused on the changes to the immune system brought on by the vaccination. Laboratory experiments showed that the effectiveness of the vaccine stems from the activation of certain cells of the immune system, the T lymphocytes of type Th1. These induce the infected macrophages to produce nitric oxide, highly toxic for cells. This process, which did not occur in the untreated dogs, thus enables macrophages to get rid of the parasites that are infecting them. The animal thus acquires long-term protection against visceral leishmaniasis.

Although this vaccine’s effectiveness has been shown only on a limited number of animals, it is a further step towards protection of dogs against this disease. These results, confirmed indeed by the first, highly encouraging, data from a large-scale clinical trial currently under way (phase III), are promising for efforts to reduce transmission of leishmaniasis to humans. They also point to new lines of investigation for elaborating a possible human vaccine. An integrated research project, involving several IRD groups (2), has just been set up in India, to work on this. It should lead to an assessment of the effectiveness of such a vaccine in humans.

(1) The finding of these proteins furthermore necessitated the development, achieved in 1992, of suitable culture media (patented), with the attached proteins removed. The media normally used ijn fact contain many protein-containing compounds (serumalbumins, albumins etc.) which prevent specific isolation of the proteins excreted by the parasite. References : Lemesre J.L., Blanc M.P., Grébaut P., Zilberfard V. et Carrière V. (1994). Culture continue de formes amastigotes de Leishmanies en condition axénique. Réalisation du cycle évolutif in vitro. Médecine et Armées, 22 (1), 99 and Merlen T, Sereno D, Brajon N. and Lemesre J.L. (1999). Leishmania Spp: completely defined medium without serum and macromolecules (CDM/LP) for the continuous in vitro cultivation of infective promastigote forms. Am. J. Trop. Med. Hyg., 60 (1), 41-50. Brevets : Lemesre J.L. (1993). "Procédé de culture in vitro de différents stades parasitaires obtenus et applications biologiques". Brevet français, FR n° 93 05779 ; Lemesre J.L. (1994)."Method for the culture in vitro of different stages of tissue parasites".Brevet international, PCT/FR N° 94/00577.

(2) The project, entitled « Study of the host and parasite factors determining the outcome of visceral leishmaniasis: application for prevention and treatment », involves research IRD units UR 08 « Trypanosome pathogenesis » and 165 « Genetics and evolution of infectious diseases », in conjunction with the Institute of Medical Sciences, Banares Hindu University, Varanasi, India.

Romain Loury/Marie Guillaume - DIC

Marie Guillaume | alfa
Further information:
http://www.ird.fr
http://www.ird.fr/fr/actualites/fiches/2005/fiche226.htm

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>