Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells grown in lab mirror normal developmental steps

22.06.2005


Johns Hopkins scientists have developed a way to study the earliest steps of human blood development using human embryonic stem cells grown in a lab dish instead of the embryos themselves.



The process avoids some of the ethical and technical obstacles involved in such research, according to the Johns Hopkins investigators.

The Johns Hopkins researchers’ system involves the study of existing embryonic stem cell lines derived from in vitro fertilization methods, and so doesn’t require generation of embryos through cloning, a technique recently reported by South Korean scientists.


In their report on the work in the June issue of the journal Blood, the Johns Hopkins team demonstrated a clear similarity between how human embryonic stem cells specialize into blood cells and how blood cells develop in human embryos.

"Our findings provide an unparalleled opportunity to study the basic questions of human development, like ’Where does blood come from?’" says Elias Zambidis, M.D., Ph.D., first author on the paper and an assistant professor of pediatrics and oncology in the Johns Hopkins School of Medicine.

Knowing the steps by which stem cells develop into blood cells are likely to help medical researchers figure out how to treat cancers of the blood, such as leukemia and lymphoma, Zambidis notes.

"More and more we’re learning that the genes that turn on in the embryo to make blood stem cells are the same genes that go wrong in cancer," he says. "So if we understand what the important genes are and how they work, we might be able to develop and to target new cancer therapies more effectively."

Historically, scientists have worked on mouse and zebrafish models of embryological blood cell development, but ethical and technical barriers have stood in the way of an in-depth study of blood formation in human embryos. In the new work, Hopkins scientists and colleagues from the University of Pittsburgh School of Medicine used laboratory-grown dishes of human stem cells, in clumps called human embryoid bodies, and observed three distinct steps taken by stem cells on their way to becoming blood cells.

Without any chemical manipulation or stimulation, the clusters of human stem cells first became colonies of cells that can produce endothelium, or the tissue that makes up the circulatory system. These colonies can then also form the precursors of blood cells, in a structure similar to the yolk sac of human embryos. Finally, some of the cells in the colonies form blood cells similar to those found in the liver and bone marrow of a developing fetus, making it simple for the researchers to pick out the blood cells for further investigation. "We were quite surprised to find that these steps proceeded spontaneously, without the need for stimulation by growth factors or other chemicals," says Zambidis. "It’s likely that the same method of picking out certain kinds of cells could be used to study processes other than blood cell development."

Most importantly, Zambidis says, the stages of blood cell development he and his team found in the stem cell lines correlate with what is already known about early stages of human blood cell development in embryos in the womb. "We’ve captured these phases of stem cell specialization, or differentiation, in a dish," says Zambidis. "Now we can study these phases and hopefully help solve the Rubik’s Cube of how human development works."

Because embryonic stem cells are capable of becoming virtually every type of cell in the human body, understanding how they do so might provide the chance to harness that process to make a limitless supply of specific cells for therapeutic purposes. For instance, stem cells directed down the path of blood cell development might be useful to help treat leukemias or other blood disorders.

Zambidis and colleagues are currently using their model to study the next stage in blood cell development, which in a growing embryo involves blood cell precursors moving from the yolk sac into the liver, bone marrow and thymus. Zambidis says that if blood stem cells are to be used for therapeutic purposes, they would likely come from this next stage of development.

Katherine Unger | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>