Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells grown in lab mirror normal developmental steps

22.06.2005


Johns Hopkins scientists have developed a way to study the earliest steps of human blood development using human embryonic stem cells grown in a lab dish instead of the embryos themselves.



The process avoids some of the ethical and technical obstacles involved in such research, according to the Johns Hopkins investigators.

The Johns Hopkins researchers’ system involves the study of existing embryonic stem cell lines derived from in vitro fertilization methods, and so doesn’t require generation of embryos through cloning, a technique recently reported by South Korean scientists.


In their report on the work in the June issue of the journal Blood, the Johns Hopkins team demonstrated a clear similarity between how human embryonic stem cells specialize into blood cells and how blood cells develop in human embryos.

"Our findings provide an unparalleled opportunity to study the basic questions of human development, like ’Where does blood come from?’" says Elias Zambidis, M.D., Ph.D., first author on the paper and an assistant professor of pediatrics and oncology in the Johns Hopkins School of Medicine.

Knowing the steps by which stem cells develop into blood cells are likely to help medical researchers figure out how to treat cancers of the blood, such as leukemia and lymphoma, Zambidis notes.

"More and more we’re learning that the genes that turn on in the embryo to make blood stem cells are the same genes that go wrong in cancer," he says. "So if we understand what the important genes are and how they work, we might be able to develop and to target new cancer therapies more effectively."

Historically, scientists have worked on mouse and zebrafish models of embryological blood cell development, but ethical and technical barriers have stood in the way of an in-depth study of blood formation in human embryos. In the new work, Hopkins scientists and colleagues from the University of Pittsburgh School of Medicine used laboratory-grown dishes of human stem cells, in clumps called human embryoid bodies, and observed three distinct steps taken by stem cells on their way to becoming blood cells.

Without any chemical manipulation or stimulation, the clusters of human stem cells first became colonies of cells that can produce endothelium, or the tissue that makes up the circulatory system. These colonies can then also form the precursors of blood cells, in a structure similar to the yolk sac of human embryos. Finally, some of the cells in the colonies form blood cells similar to those found in the liver and bone marrow of a developing fetus, making it simple for the researchers to pick out the blood cells for further investigation. "We were quite surprised to find that these steps proceeded spontaneously, without the need for stimulation by growth factors or other chemicals," says Zambidis. "It’s likely that the same method of picking out certain kinds of cells could be used to study processes other than blood cell development."

Most importantly, Zambidis says, the stages of blood cell development he and his team found in the stem cell lines correlate with what is already known about early stages of human blood cell development in embryos in the womb. "We’ve captured these phases of stem cell specialization, or differentiation, in a dish," says Zambidis. "Now we can study these phases and hopefully help solve the Rubik’s Cube of how human development works."

Because embryonic stem cells are capable of becoming virtually every type of cell in the human body, understanding how they do so might provide the chance to harness that process to make a limitless supply of specific cells for therapeutic purposes. For instance, stem cells directed down the path of blood cell development might be useful to help treat leukemias or other blood disorders.

Zambidis and colleagues are currently using their model to study the next stage in blood cell development, which in a growing embryo involves blood cell precursors moving from the yolk sac into the liver, bone marrow and thymus. Zambidis says that if blood stem cells are to be used for therapeutic purposes, they would likely come from this next stage of development.

Katherine Unger | EurekAlert!
Further information:
http://www.jhmi.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>