Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells grown in lab mirror normal developmental steps

22.06.2005


Johns Hopkins scientists have developed a way to study the earliest steps of human blood development using human embryonic stem cells grown in a lab dish instead of the embryos themselves.



The process avoids some of the ethical and technical obstacles involved in such research, according to the Johns Hopkins investigators.

The Johns Hopkins researchers’ system involves the study of existing embryonic stem cell lines derived from in vitro fertilization methods, and so doesn’t require generation of embryos through cloning, a technique recently reported by South Korean scientists.


In their report on the work in the June issue of the journal Blood, the Johns Hopkins team demonstrated a clear similarity between how human embryonic stem cells specialize into blood cells and how blood cells develop in human embryos.

"Our findings provide an unparalleled opportunity to study the basic questions of human development, like ’Where does blood come from?’" says Elias Zambidis, M.D., Ph.D., first author on the paper and an assistant professor of pediatrics and oncology in the Johns Hopkins School of Medicine.

Knowing the steps by which stem cells develop into blood cells are likely to help medical researchers figure out how to treat cancers of the blood, such as leukemia and lymphoma, Zambidis notes.

"More and more we’re learning that the genes that turn on in the embryo to make blood stem cells are the same genes that go wrong in cancer," he says. "So if we understand what the important genes are and how they work, we might be able to develop and to target new cancer therapies more effectively."

Historically, scientists have worked on mouse and zebrafish models of embryological blood cell development, but ethical and technical barriers have stood in the way of an in-depth study of blood formation in human embryos. In the new work, Hopkins scientists and colleagues from the University of Pittsburgh School of Medicine used laboratory-grown dishes of human stem cells, in clumps called human embryoid bodies, and observed three distinct steps taken by stem cells on their way to becoming blood cells.

Without any chemical manipulation or stimulation, the clusters of human stem cells first became colonies of cells that can produce endothelium, or the tissue that makes up the circulatory system. These colonies can then also form the precursors of blood cells, in a structure similar to the yolk sac of human embryos. Finally, some of the cells in the colonies form blood cells similar to those found in the liver and bone marrow of a developing fetus, making it simple for the researchers to pick out the blood cells for further investigation. "We were quite surprised to find that these steps proceeded spontaneously, without the need for stimulation by growth factors or other chemicals," says Zambidis. "It’s likely that the same method of picking out certain kinds of cells could be used to study processes other than blood cell development."

Most importantly, Zambidis says, the stages of blood cell development he and his team found in the stem cell lines correlate with what is already known about early stages of human blood cell development in embryos in the womb. "We’ve captured these phases of stem cell specialization, or differentiation, in a dish," says Zambidis. "Now we can study these phases and hopefully help solve the Rubik’s Cube of how human development works."

Because embryonic stem cells are capable of becoming virtually every type of cell in the human body, understanding how they do so might provide the chance to harness that process to make a limitless supply of specific cells for therapeutic purposes. For instance, stem cells directed down the path of blood cell development might be useful to help treat leukemias or other blood disorders.

Zambidis and colleagues are currently using their model to study the next stage in blood cell development, which in a growing embryo involves blood cell precursors moving from the yolk sac into the liver, bone marrow and thymus. Zambidis says that if blood stem cells are to be used for therapeutic purposes, they would likely come from this next stage of development.

Katherine Unger | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>