Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State part of effort to completely sequence common wheat genome

15.06.2005


Kansas State University and the Kansas Wheat Commission are spearheading the effort to create the Wheat Genome Sequencing Consortium, an international program focused on building the foundation for advancing agricultural research for wheat production.



The principal goal of the consortium is to obtain a publicly available, complete sequence of common (hexaploid) wheat since it is grown on more than 95 percent of the wheat-growing-area worldwide.

Bikram Gill, university distinguished professor of plant pathology at K-State and the U.S. co-chair of the consortium, said wheat should be next in line for the sequencing process. "Among the three major crops: rice, maize and wheat, the rice and maize genomes have already been sequenced," he said. "Right now, there is very little effort for wheat and it is getting behind. The reason is that the wheat genome is very large. It is 40-times larger than the rice genome and six-times larger than the maize genome."


The complete sequence of common wheat holds the key to genetic improvements that will allow growers to meet the growing demand for high-quality food produced in an environmentally sensitive, sustainable and profitable manner, he said.

Gill said understanding the sequencing process is as important to understanding wheat genomes as learning the alphabet is in learning the English language. "Essentially, there are four chemical letters called bases -- A, C, G and T -- in the DNA code that controls wheat genetic traits," he said. "There are 16 billion base pairs in wheat. To learn the language of genetic traits we must determine the exact sequence of the four letters in the wheat genomes."

In the future, members of the consortium will begin identifying all 16 billion sequences, but for now the program is in the process of plotting out physical maps of small sequences. This is just one of the short-term goals laid out by the consortium.

The organization believes that its goal of obtaining a complete sequence of common wheat for a reasonable price is achievable in the foreseeable future. In late 2003, the cost of obtaining coverage of a genome equivalent in size to the human genome was approximately $45 million. Within 18 months, the cost was less than $18 million at any of the large sequencing centers. New sequencing methods that are under development may reduce further sequencing costs in the future, Gill said.

Bikram S. Gill | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>