Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNA tweaks protein that controls early heart development

13.06.2005


Researchers at UT Southwestern Medical Center have discovered how a small molecule of RNA called microRNA – a chemical cousin of DNA – helps fine tune the production of a key protein involved in the early development of heart muscle.



The findings, available in the online edition of the journal Nature, may aid scientists in their understanding of how a progenitor cell, or stem cell, decides to become a heart cell, as well as offer researchers a way to predict how other microRNAs in the body control the production of important proteins. The discoveries could provide clues important to understanding both stem cell biology and congenital heart disease.

In order for cells to produce the proteins that carry out all of life’s functions, the information contained in genes is first copied by special enzymes into messenger RNA, or mRNA. Information in mRNA then is used to make a particular protein.


Scientists believe microRNAs seek out and bind to mRNA, fine tuning the amount of protein that mRNAs manufacture. In some cases, microRNAs shut down protein production altogether.

The UT Southwestern researchers discovered that a microRNA called miR-1 targets the mRNA of the gene Hand2, a key regulator of heart formation. The microRNA turns off production of the Hand2 protein at precisely the right time to allow the proper development of heart muscle.

"We think that Hand2 is necessary in the early stages of embryonic development to allow proliferation and expansion of a pool of muscle progenitor cells that can eventually develop into the heart," said Dr. Deepak Srivastava, senior author of the paper. "But at some point production of Hand2 needs to be shut off so the cells can go on to the next stage in their development and differentiate into heart muscle cells. We identified Hand2 as the target for this particular microRNA."

Dr. Srivastava is a former professor of pediatrics and molecular biology at UT Southwestern, where he and his colleagues performed the Nature research. He currently is director of the Gladstone Institute of Cardiovascular Disease and professor of pediatrics at the University of California, San Francisco.

Dr. Srivastava said that if the microRNA is not functioning properly, heart development could be affected in many ways, including not having enough cells or having too many cells in certain locations.

"There are a variety of things that are critical to any organ’s development," he said. "The Hand2 protein is a master regulator, and in its absence, you don’t get any expansion of the heart ventricle at all. The finding that this microRNA controls Hand2, and probably several other proteins, is very significant."

The UT Southwestern research team is currently screening human patients with congenital heart disease for mutations in the gene miR-1 to determine what health effects such a mutation might cause. They also are studying mice and fruit flies lacking miR-1.

Dr. Srivastava said the field of microRNA studies has only recently begun to blossom. One of the key challenges is to determine which messenger RNA any given microRNA will target. Hundreds of genes are known to produce microRNA, but in vertebrates there are only three or four known targets for those hundreds.

"We are learning that microRNAs are a common mechanism through which a cell regulates itself at various stages, both during development and later in life," he said. "This is a rapid way to regulate protein levels. You can imagine a pool of messenger RNA ready to make a protein, and by virtue of a microRNA, that protein synthesis can immediately be shut off and turned back on based on a cell’s environment or its needs at the time."

Dr. Yong Zhao, a postdoctoral researcher in Dr. Srivastava’s lab at UT Southwestern, developed a new method to predict targets for vertebrate microRNAs based on the genetic sequence of microRNA genes and the accessibility of the target mRNA. Dr. Zhao analyzed all the known microRNA targets in worms and fruit flies to determine what they had in common, hoping to find clues to help predict unknown targets in mammals. He then used those criteria to search the entire mouse genome for potential microRNA targets.

"If this method of predicting targets turns out to be correct and specific, I think it will go a long way to opening the field more broadly, providing scientists who study microRNAs with an easier way to really figure out what they do," Dr. Srivastava said.

In addition to Dr. Srivastava and Dr. Zhao, UT Southwestern postdoctoral researcher in pediatrics Dr. Eva Samal also contributed to the research.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>