Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New regulators of apoptosis and chemoresistance identified

13.06.2005


Using targeted RNA interference, or RNAi libraries, researchers at Harvard Medical School describe the first large-scale classification of kinase and phosphatase gene families on the basis of their role in apoptosis and cell survival. This study appears in the June issue of Nature Cell Biology.



Jeffrey MacKeigan, former HMS research fellow in cell biology now working at Novartis Institutes for Biomedical Research, and colleagues utilized RNAi to systematically screen the kinase and phosphatase component of the human genome. They found that 11 percent of kinases control cell survival. As expected, this research identified known survival kinases (such as SGK, AKT2, and PKC), members of the AGC family of kinases, and several novel regulators of apoptosis and chemoresistance.

"Interestingly, 32 percent of phosphatases and their regulatory subunits contribute to cell survival," said MacKeigan, "revealing a previously unrecognized general role for phosphatases as negative regulators of apoptosis. This is important because phosphatases cannot be simply viewed as enzymes that oppose the action of kinases and can have a positive role in cell survival."


The researchers also identified a group of phosphatases whose loss of function results in chemoresistance and implicates these phosphatases as potential tumor suppressors.

"Down regulation of many of these tumor suppressor phosphatases resulted in a marked cellular resistance to conventional chemotherapeutic agents. Therefore, finding out whether some of these phosphatases have inactivating mutations in specific cancers may help overcome drug resistance," said MacKeigan.

Additionally, the study showed that down regulation of survival kinases using RNAi sensitizes resistant cells to low concentrations of chemotherapeutic agents, emphasizing that these kinases may be important drug targets. This highlights the potential future use of either RNAi or small molecule inhibitors to selectively sensitize tumor cells to cell death and therefore may result in less toxicity to normal cells.

Leah Gourley | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>