Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single gene is genetic switch for fly sexual behavior

03.06.2005


A male fly’s sexual courtship of a female fly is a complicated business of tapping, singing, wing vibration, and licking, but a single gene is all that is needed to produce this complex behavior, according to new research published in this week’s issue of the journal Cell.




The gene encodes the Fruitless protein. Male and female flies carry different versions of the fruitless protein, as a result of sex-specific splicing of the mRNA. The male form of Fruitless is critical for the male courtship ritual and males’ preference for mating with females, as previous studies have shown.

Now, Barry J. Dickson and Ebru Demir of the Institute of Molecular Biotechnology of the Austrian Academy of Sciences show just how intimately fruitless is linked to these stereotypically male behaviors. They discovered that female flies with the male version of fruitless behave like males, directing at other females a sexual display nearly identical to their male counterparts.


Female flies with the male version of the protein also make amorous advances toward male flies that express female pheromones. In these cases, "we have been able to reverse the sex roles during Drosophila courtship," Dickson and Demir say.

Dickson and Demir created male-spliced versions of fruitless in female flies and female-spliced versions in male flies. Males with the female version of fruitless "barely court at all" when paired with virgin female flies in an observation chamber, according to the researchers.

Males with the female fruitless splice form were also more likely to court other males than flies with the male form, suggesting that male-specific fruitless splicing "not only promotes male-female courtship, it also inhibits male-male courtship," the researchers say.

Dickson and Demir refer to fruitless as a behavioral "switch gene" that is both necessary and sufficient to produce a particular behavior. Switch genes that trigger the development of a particular anatomical feature like wing structure have been studied extensively, but there are very few studies of switch genes that control a complex behavior, the researchers note.

In part, this is because finding behavioral switch genes can be a difficult task. The key, says Dickson, is demonstrating that a specific gene is sufficient to produce a particular behavior.

"This means showing that gene X is sufficient to create the potential for behavior Y in an otherwise normal animal. It is the ’otherwise normal’ part that is tricky," he says.

"Putting gene X into another species and expecting to see a behavior is unrealistic--a ’flight’ gene from Drosophila, if it existed, is not going to make a mouse fly," Dickson explains, noting that only members of the same species might be expected to share the same set of "normal" behaviors.

"So you need to put gene X in a normal animal of the same species that doesn’t normally do Y. This is really only possible with sex-specific behaviors" like courtship, he says.

Dickson also says there is "something of a debate going on between the view that single genes can have profound effects on behavior, versus the more holistic view that behavior is so complex that we can never learn anything meaningful about a behavior by studying the action of a single gene."

Still, studies show that a single gene can trigger the development of complex anatomical structures like eyes or limbs, by influencing sometimes hundreds of other genes, Dickson notes.

"I don’t see any good reason why innate behaviors, which are a consequence of how the nervous system is built, should be any different. Indeed, I think that is what our work shows," he says.

In a second Cell paper, Dickson and colleagues demonstrate that nerve cells expressing the fruitless gene are linked in a circuit in both males and females. The finding suggests that the "essential difference in sexual behavior between males and females lies in the functioning of this circuit and not its construction," according to the researchers.

Dickson and colleagues have already begun collaborations with other researchers to determine how the fruitless gene might be involved in other behavioral patterns like aggression. "I think it is going to be fascinating to try to figure out how a fly decides between ’love’ and ’war’, and what fruitless and the fruitless-expressing neurons have do to with this," he says.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>