Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD research reveals mechanism involved with type of fatal epilepsy

24.05.2005


Researchers at University of California, San Diego (UCSD) have found that Lafora disease, an inherited form of epilepsy that results in death by the age of 30, can be caused by mutations in a gene that regulates the concentration of the protein laforin. These findings are reported in the current issue of Proceedings of the National Academy of Sciences (PNAS).



Lafora disease is characterized by normal development for the first decade of life, followed by an initial seizure in the second decade, progressively worsening seizures, early dementia, and death within 10 years of onset. Medications can ease the severity of initial symptoms, but there is no long-term treatment or cure for the disease.

A puzzling aspect of the disease is the accumulation of starch-/glycogen-like granules in most tissues of Lafora disease patients. Thus, researchers have long thought that a defect in glycogen metabolism is intimately linked to the disease. Recessive mutations in two genes have been shown to cause Lafora disease. The genes encode the proteins laforin and malin, but the molecular mechanism defining how loss of laforin or malin causes Lafora disease has remained unclear.


Jack E. Dixon, Ph.D., UCSD dean of scientific affairs and professor of pharmacology, and colleagues at UCSD investigated the role of malin in Lafora disease and found that malin physically interacts with laforin and regulates laforin’s concentration by marking it for degradation. Their results show that approximately 40 percent of patients with Lafora disease have mutations in malin that render it unable to mark laforin for degradation. This increase in laforin may lead to Lafora disease through aberrant glycogen metabolism.

This work establishes a few testable models as to the molecular mechanism of the disease. Dixon and colleagues are currently designing experiments to test these models with the hope of gaining the necessary insights to develop potential therapies for Lafora disease.

Co-authors are Matthew S. Gentry, Ph.D., and Carolyn A. Worby, Ph.D., both of the UCSD Department of Pharmacy. This research was funded by the National Institutes of Health.

Nancy Stringer | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>