Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD research reveals mechanism involved with type of fatal epilepsy

24.05.2005


Researchers at University of California, San Diego (UCSD) have found that Lafora disease, an inherited form of epilepsy that results in death by the age of 30, can be caused by mutations in a gene that regulates the concentration of the protein laforin. These findings are reported in the current issue of Proceedings of the National Academy of Sciences (PNAS).



Lafora disease is characterized by normal development for the first decade of life, followed by an initial seizure in the second decade, progressively worsening seizures, early dementia, and death within 10 years of onset. Medications can ease the severity of initial symptoms, but there is no long-term treatment or cure for the disease.

A puzzling aspect of the disease is the accumulation of starch-/glycogen-like granules in most tissues of Lafora disease patients. Thus, researchers have long thought that a defect in glycogen metabolism is intimately linked to the disease. Recessive mutations in two genes have been shown to cause Lafora disease. The genes encode the proteins laforin and malin, but the molecular mechanism defining how loss of laforin or malin causes Lafora disease has remained unclear.


Jack E. Dixon, Ph.D., UCSD dean of scientific affairs and professor of pharmacology, and colleagues at UCSD investigated the role of malin in Lafora disease and found that malin physically interacts with laforin and regulates laforin’s concentration by marking it for degradation. Their results show that approximately 40 percent of patients with Lafora disease have mutations in malin that render it unable to mark laforin for degradation. This increase in laforin may lead to Lafora disease through aberrant glycogen metabolism.

This work establishes a few testable models as to the molecular mechanism of the disease. Dixon and colleagues are currently designing experiments to test these models with the hope of gaining the necessary insights to develop potential therapies for Lafora disease.

Co-authors are Matthew S. Gentry, Ph.D., and Carolyn A. Worby, Ph.D., both of the UCSD Department of Pharmacy. This research was funded by the National Institutes of Health.

Nancy Stringer | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>