Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fundamental genes regulate human blood stem cells

03.05.2005


Credit: Dr. Mickie Bhatia


A study published in the May issue of Developmental Cell identifies specific genes that appear to be key players in the regulation of human-blood stem cells. This work is the first to validate gene expression analysis in human stem cells with functional experiments. The findings also suggest that changes in the expression of genes associated with universal cell signaling pathways can have a substantial impact on human stem cell behavior.

Formation and ongoing maintenance of blood cells begins with a rare cell called a hematopoietic stem cell (HSC) that has the ability to make more copies of itself or differentiate into progenitors that then form red blood cells, various types of white blood cells, or platelets. Blood cells must be constantly renewed throughout the lifetime of an animal, so control and regulation of HSCs is critical for survival. Although it is clear that the capacity for HSC proliferation and differentiation declines with age, not much is known about exactly how HSC physiology is regulated.

Dr. Mickie Bhatia and colleagues from the Robarts Research Institute in Ontario used genome-wide gene-expression profiling (microarray analysis) to examine purified subsets of defined blood-cell populations containing progenitors or HSCs from multiple stages of human development. The researchers identified two genes that act independently to enhance cell-cycle progression and inhibit cell death specifically in HSCs. The role of one gene, HES-1, ties in with previous research pointing to the importance of the cell-cycle-associated Notch signaling pathway. The second gene, HLF, is a DNA-binding transcription factor involved in preventing premature HSC death. Bhatia and colleagues showed that raising the amount of either gene in human HSCs increased their capacity for forming blood cells when they were transferred into mice.



The researchers conclude that HES-1 and HLF are regulators of HSC behavior. Because HES-1 and HLF impact HSC function via two different mechanisms involving integral pathways common to all human cells, the authors suggest that HSC behavior may be controlled by general rather than HSC-specific genes. "Our report identifies regulatory factors involved in HSC function that elicit their effect through independent systems and suggest that a unique orchestration of pathways fundamental to all human cells is capable of controlling stem cell behavior," explains Dr. Bhatia.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>