Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Use of PET can reduce, may eliminate more strenuous drug development trials with animals

27.04.2005


A number of articles explore the use of positron emission tomography (PET) and small animal imaging—nonsurgical techniques that open the door to understanding and treating human diseases—in the April issue of the Society of Nuclear Medicine’s Journal of Nuclear Medicine.

A major benefit of small animal imaging "is the ability to carry out many studies at various time points with the same animal," said SNM member Michael J. Welch, Ph.D., co-author of "Preparation, Biodistribution and Small Animal PET of 45Ti-Transferrin." Welch, a co-director of the division of radiological sciences at Washington University’s renowned Mallinckrodt Institute of Radiology and head of the institute’s radiochemistry laboratory, explained that studies on the same living animal can be extended over a period of time, allowing researchers to follow the development of disease in one subject and to monitor the effects of interventions on disease progression and outcome. Crucial information can be obtained noninvasively, repeatedly and quantitatively in the same animal, he said. With small animal imaging, one can very rapidly evaluate new radiopharmaceuticals using a limited number of animals and possibly eliminate the need for biopsies, extending an animal’s life.

PET provides a noninvasive view into a person’s living biology as it tracks a range of biological processes from metabolism to receptors, gene expression and drug activity. This imaging tool examines the chemistry and biology of a person’s body by monitoring ingested tracer molecules, and it is used to study the metabolism of the brain, the heart and cancer. A miniature version of PET was developed and is used in much the same way to image small animals.



Small animals, especially mice, play a fundamental in the study of human biology and disease. Mice have nearly the same set of genes as humans, offering an opportunity to learn about the function of the many genes shared by both. This could lead to improved diagnosis of disorders such as Alzheimer’s and Parkinson’s diseases, epilepsy, cardiovascular illnesses and many cancers. Researchers can gain a broader understanding of basic insights into normal physiology and disease processes to drug development and early response to anticancer and gene therapy. In addition, small animal imaging significantly reduces the preclinical evaluation time for therapeutic pharmaceuticals, possibly speeding the way for innovative drugs to patients, said Welch. Since there is no public registry of animal researchers, Welch estimates that there may be as many as 12,000 academic and private animal imaging labs in the world and that more than 200 may do small animal PET routinely.

Through small animal imaging research, Welch and his researchers gained more of an understanding about titanium anti-cancer drugs and new techniques for PET imaging with 45Ti, which they found to have excellent imaging characteristics and to be relatively inexpensive to produce. Welch and his researchers are also investigating the effect of cancer therapies on tumor function and performing cardiac studies that explore drugs that reverse the conditions of animals.

Maryann Verrillo | EurekAlert!
Further information:
http://interactive.snm.org/index.cfm?PageID=3926
http://www.snm.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>