Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Use of PET can reduce, may eliminate more strenuous drug development trials with animals

27.04.2005


A number of articles explore the use of positron emission tomography (PET) and small animal imaging—nonsurgical techniques that open the door to understanding and treating human diseases—in the April issue of the Society of Nuclear Medicine’s Journal of Nuclear Medicine.

A major benefit of small animal imaging "is the ability to carry out many studies at various time points with the same animal," said SNM member Michael J. Welch, Ph.D., co-author of "Preparation, Biodistribution and Small Animal PET of 45Ti-Transferrin." Welch, a co-director of the division of radiological sciences at Washington University’s renowned Mallinckrodt Institute of Radiology and head of the institute’s radiochemistry laboratory, explained that studies on the same living animal can be extended over a period of time, allowing researchers to follow the development of disease in one subject and to monitor the effects of interventions on disease progression and outcome. Crucial information can be obtained noninvasively, repeatedly and quantitatively in the same animal, he said. With small animal imaging, one can very rapidly evaluate new radiopharmaceuticals using a limited number of animals and possibly eliminate the need for biopsies, extending an animal’s life.

PET provides a noninvasive view into a person’s living biology as it tracks a range of biological processes from metabolism to receptors, gene expression and drug activity. This imaging tool examines the chemistry and biology of a person’s body by monitoring ingested tracer molecules, and it is used to study the metabolism of the brain, the heart and cancer. A miniature version of PET was developed and is used in much the same way to image small animals.



Small animals, especially mice, play a fundamental in the study of human biology and disease. Mice have nearly the same set of genes as humans, offering an opportunity to learn about the function of the many genes shared by both. This could lead to improved diagnosis of disorders such as Alzheimer’s and Parkinson’s diseases, epilepsy, cardiovascular illnesses and many cancers. Researchers can gain a broader understanding of basic insights into normal physiology and disease processes to drug development and early response to anticancer and gene therapy. In addition, small animal imaging significantly reduces the preclinical evaluation time for therapeutic pharmaceuticals, possibly speeding the way for innovative drugs to patients, said Welch. Since there is no public registry of animal researchers, Welch estimates that there may be as many as 12,000 academic and private animal imaging labs in the world and that more than 200 may do small animal PET routinely.

Through small animal imaging research, Welch and his researchers gained more of an understanding about titanium anti-cancer drugs and new techniques for PET imaging with 45Ti, which they found to have excellent imaging characteristics and to be relatively inexpensive to produce. Welch and his researchers are also investigating the effect of cancer therapies on tumor function and performing cardiac studies that explore drugs that reverse the conditions of animals.

Maryann Verrillo | EurekAlert!
Further information:
http://interactive.snm.org/index.cfm?PageID=3926
http://www.snm.org

More articles from Life Sciences:

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>