Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Use of PET can reduce, may eliminate more strenuous drug development trials with animals


A number of articles explore the use of positron emission tomography (PET) and small animal imaging—nonsurgical techniques that open the door to understanding and treating human diseases—in the April issue of the Society of Nuclear Medicine’s Journal of Nuclear Medicine.

A major benefit of small animal imaging "is the ability to carry out many studies at various time points with the same animal," said SNM member Michael J. Welch, Ph.D., co-author of "Preparation, Biodistribution and Small Animal PET of 45Ti-Transferrin." Welch, a co-director of the division of radiological sciences at Washington University’s renowned Mallinckrodt Institute of Radiology and head of the institute’s radiochemistry laboratory, explained that studies on the same living animal can be extended over a period of time, allowing researchers to follow the development of disease in one subject and to monitor the effects of interventions on disease progression and outcome. Crucial information can be obtained noninvasively, repeatedly and quantitatively in the same animal, he said. With small animal imaging, one can very rapidly evaluate new radiopharmaceuticals using a limited number of animals and possibly eliminate the need for biopsies, extending an animal’s life.

PET provides a noninvasive view into a person’s living biology as it tracks a range of biological processes from metabolism to receptors, gene expression and drug activity. This imaging tool examines the chemistry and biology of a person’s body by monitoring ingested tracer molecules, and it is used to study the metabolism of the brain, the heart and cancer. A miniature version of PET was developed and is used in much the same way to image small animals.

Small animals, especially mice, play a fundamental in the study of human biology and disease. Mice have nearly the same set of genes as humans, offering an opportunity to learn about the function of the many genes shared by both. This could lead to improved diagnosis of disorders such as Alzheimer’s and Parkinson’s diseases, epilepsy, cardiovascular illnesses and many cancers. Researchers can gain a broader understanding of basic insights into normal physiology and disease processes to drug development and early response to anticancer and gene therapy. In addition, small animal imaging significantly reduces the preclinical evaluation time for therapeutic pharmaceuticals, possibly speeding the way for innovative drugs to patients, said Welch. Since there is no public registry of animal researchers, Welch estimates that there may be as many as 12,000 academic and private animal imaging labs in the world and that more than 200 may do small animal PET routinely.

Through small animal imaging research, Welch and his researchers gained more of an understanding about titanium anti-cancer drugs and new techniques for PET imaging with 45Ti, which they found to have excellent imaging characteristics and to be relatively inexpensive to produce. Welch and his researchers are also investigating the effect of cancer therapies on tumor function and performing cardiac studies that explore drugs that reverse the conditions of animals.

Maryann Verrillo | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>