Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exercise slows development of Alzheimer’s-like brain changes in mice, new study finds

27.04.2005


Physical activity appears to inhibit Alzheimer’s-like brain changes in mice, slowing the development of a key feature of the disease, according to a new study. The research demonstrated that long-term physical activity enhanced the learning ability of mice and decreased the level of plaque-forming beta-amyloid protein fragments--a hallmark characteristic of Alzheimer’s disease (AD)--in their brains.



A number of population-based studies suggest that lifestyle interventions may help to slow the onset and progression of AD. Because of these studies, scientists are seeking to find out if and how physically or cognitively stimulating activity might delay the onset and progression of Alzheimer’s disease. In this study, scientists have now shown in an animal model system that one simple behavioral intervention--exercise--could delay, or even prevent, development of AD-like pathology by decreasing beta-amyloid levels.

Results of this study, conducted by Paul A. Adlard, Ph.D., Carl W. Cotman, Ph.D., and colleagues at the University of California, Irvine, are published in the April 27, 2005, issue of The Journal of Neuroscience. The research was funded in part by the National Institute on Aging (NIA), a component of the National Institutes of Health, U.S. Department of Health and Human Services. Additional funding was provided by the Christopher Reeve Paralysis Foundation.


To directly test the possibility that exercise (in the form of voluntary running) may reduce the cognitive decline and brain pathology that characterizes AD, the study utilized a transgenic mouse model of AD rather than normal mice. The transgenic mice begin to develop AD-like amyloid plaques at around 3 months of age. Initially, young mice (6 weeks or 1 month of age) were placed in cages with or without running wheels for periods of either 1 month or 5 months, respectively. Mice with access to running wheels had the opportunity to exercise any time, while those without the wheels were classified as "sedentary."

On 6 consecutive days after the exercise phase, the researchers placed each mouse in a Morris water maze to examine how fast it could learn the location of a hidden platform and how long it retained this information. (This water maze task involves a small pool of water with a submerged platform that the mouse must learn how to find.) The animals that exercised learned the task faster. Thus, the mice that used the running wheels for 5 months took less time than the sedentary animals to find the escape platform. The exercised mice acquired maximal performance after only 2 days on the task, while it took more than 4 days for the sedentary mice to reach that same level of performance. This suggests that exercise may help to offset learning/cognitive deficits present in AD patients.

Next, the investigators examined tissues from the brains of mice that had exercised for 5 months. They compared the levels of plaques, beta-amyloid fragments, and amyloid precursor protein, a protein found throughout the body and from which the beta-amyloid peptide is derived. In AD, beta-amyloid fragments clump together to form plaques in the hippocampus and cerebral cortex, the brain regions used in memory, thinking, and decision making.

Compared to the sedentary animals, mice that had exercised for 5 months on the running wheels had significantly fewer plaques and fewer beta-amyloid fragments (peptides) in the cerebral cortex and hippocampus, approximately by 50 percent. Additional studies, of exercised animals at 10 weeks old, showed that the mechanism underlying this difference began within the first month of exercise.

"These results suggest that exercise--a simple behavioral strategy--in these mice may bring about a change in the way that amyloid precursor protein is metabolized," says D. Stephen Snyder, Ph.D., director of the etiology of Alzheimer’s program in the NIA’s Neuroscience and Neuropsychology of Aging Program. "From other research, it is known that in the aging human brain, deposits of beta-amyloid normally increase. This study tells us that development of those deposits can be reduced and possibly eliminated through exercise, at least in this mouse model."

These findings follow another recent report of a link between an enriched environment and Alzheimer’s-like brain changes. That study, published Orly Lazarov, Ph.D., and colleagues in the March 11, 2005, issue of the journal Cell, found that beta-amyloid levels decreased in the brains of another kind of transgenic mice when they were housed in groups and in environments that were enriched with running wheels, colored tunnels, and toys.

"Both of these studies are exciting because they offer insight into one of the pathways through which exercise and environment might promote resistance to development of cognitive changes that come with aging and AD," Snyder notes. "It is as though exercise or environmental enrichment forces the metabolism of amyloid precursor protein through a pathway that is less harmful and might even be beneficial. Further research will help us to understand those mechanisms, to learn how much and what kind of exercise is best, and to see if these same effects occur in humans."

Susan Farrer | EurekAlert!
Further information:
http://www.nia.nih.gov/
http://www.alzheimers.org

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>