Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exercise slows development of Alzheimer’s-like brain changes in mice, new study finds

27.04.2005


Physical activity appears to inhibit Alzheimer’s-like brain changes in mice, slowing the development of a key feature of the disease, according to a new study. The research demonstrated that long-term physical activity enhanced the learning ability of mice and decreased the level of plaque-forming beta-amyloid protein fragments--a hallmark characteristic of Alzheimer’s disease (AD)--in their brains.



A number of population-based studies suggest that lifestyle interventions may help to slow the onset and progression of AD. Because of these studies, scientists are seeking to find out if and how physically or cognitively stimulating activity might delay the onset and progression of Alzheimer’s disease. In this study, scientists have now shown in an animal model system that one simple behavioral intervention--exercise--could delay, or even prevent, development of AD-like pathology by decreasing beta-amyloid levels.

Results of this study, conducted by Paul A. Adlard, Ph.D., Carl W. Cotman, Ph.D., and colleagues at the University of California, Irvine, are published in the April 27, 2005, issue of The Journal of Neuroscience. The research was funded in part by the National Institute on Aging (NIA), a component of the National Institutes of Health, U.S. Department of Health and Human Services. Additional funding was provided by the Christopher Reeve Paralysis Foundation.


To directly test the possibility that exercise (in the form of voluntary running) may reduce the cognitive decline and brain pathology that characterizes AD, the study utilized a transgenic mouse model of AD rather than normal mice. The transgenic mice begin to develop AD-like amyloid plaques at around 3 months of age. Initially, young mice (6 weeks or 1 month of age) were placed in cages with or without running wheels for periods of either 1 month or 5 months, respectively. Mice with access to running wheels had the opportunity to exercise any time, while those without the wheels were classified as "sedentary."

On 6 consecutive days after the exercise phase, the researchers placed each mouse in a Morris water maze to examine how fast it could learn the location of a hidden platform and how long it retained this information. (This water maze task involves a small pool of water with a submerged platform that the mouse must learn how to find.) The animals that exercised learned the task faster. Thus, the mice that used the running wheels for 5 months took less time than the sedentary animals to find the escape platform. The exercised mice acquired maximal performance after only 2 days on the task, while it took more than 4 days for the sedentary mice to reach that same level of performance. This suggests that exercise may help to offset learning/cognitive deficits present in AD patients.

Next, the investigators examined tissues from the brains of mice that had exercised for 5 months. They compared the levels of plaques, beta-amyloid fragments, and amyloid precursor protein, a protein found throughout the body and from which the beta-amyloid peptide is derived. In AD, beta-amyloid fragments clump together to form plaques in the hippocampus and cerebral cortex, the brain regions used in memory, thinking, and decision making.

Compared to the sedentary animals, mice that had exercised for 5 months on the running wheels had significantly fewer plaques and fewer beta-amyloid fragments (peptides) in the cerebral cortex and hippocampus, approximately by 50 percent. Additional studies, of exercised animals at 10 weeks old, showed that the mechanism underlying this difference began within the first month of exercise.

"These results suggest that exercise--a simple behavioral strategy--in these mice may bring about a change in the way that amyloid precursor protein is metabolized," says D. Stephen Snyder, Ph.D., director of the etiology of Alzheimer’s program in the NIA’s Neuroscience and Neuropsychology of Aging Program. "From other research, it is known that in the aging human brain, deposits of beta-amyloid normally increase. This study tells us that development of those deposits can be reduced and possibly eliminated through exercise, at least in this mouse model."

These findings follow another recent report of a link between an enriched environment and Alzheimer’s-like brain changes. That study, published Orly Lazarov, Ph.D., and colleagues in the March 11, 2005, issue of the journal Cell, found that beta-amyloid levels decreased in the brains of another kind of transgenic mice when they were housed in groups and in environments that were enriched with running wheels, colored tunnels, and toys.

"Both of these studies are exciting because they offer insight into one of the pathways through which exercise and environment might promote resistance to development of cognitive changes that come with aging and AD," Snyder notes. "It is as though exercise or environmental enrichment forces the metabolism of amyloid precursor protein through a pathway that is less harmful and might even be beneficial. Further research will help us to understand those mechanisms, to learn how much and what kind of exercise is best, and to see if these same effects occur in humans."

Susan Farrer | EurekAlert!
Further information:
http://www.nia.nih.gov/
http://www.alzheimers.org

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>