Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Fickle’ enzyme helps protect, but also can promote heart failure, animal study shows

27.04.2005


Enzymes that make the gas nitric oxide (NO) not only protect the heart from damage due to high blood pressure or a heart attack, but also promote heart failure through overgrowth and enlargement of the muscle tissue, say animal researchers at Johns Hopkins.



The Hopkins study, to be published in the May 2 edition of the Journal of Clinical Investigation, is believed to be the first to suggest future therapies for heart failure using chemical cofactors that control the enzymes’ action.

Nitric oxide’s extensive portfolio of natural effects includes the ability to expand coronary arteries, which improves blood flow, and to help regulate the strength of the heart’s contraction, notes cardiologist David Kass, M.D., a specialist in enlarged hearts, or hypertrophy, and a professor at The Johns Hopkins University School of Medicine and its Heart Institute.


But there is clearly a dark side, a biological cost, to this activity in some situations when the enzyme changes form, Kass added.

In several experiments, the researchers simulated hypertrophy for up to nine weeks in groups of 10 to 40 male mice, some bred with and some bred without the gene for the most prominent of the NO-making enzymes, nitric-oxide synthase-3 (NOS3). NOS3 stops functioning normally when levels of its cofactor, called tetrahydrobiopterin (BH4), decrease.

Results not only showed that BH4 levels drop in hypertrophied hearts, but also that NOS3 uncouples, or splits apart, in the absence of its cofactor. Less NO is produced, and instead, the enzyme produces factors that contribute to oxidative stress in the heart. When the researchers restored levels of BH4, it reversed these harmful effects.

In the first experiment, mice without NOS3 better compensated for the damaging stress of hypertrophy, showing less muscle growth, and fibrosis (scar tissue) and better heart function than mice with the enzyme. Normal mice with the gene for NOS3 could not adapt to the stress, leading the researchers to conclude that the enzymes had lost their protective value to the heart during hypertrophy.

Biochemical analysis revealed that mice with NOS3 had a mix of two chemical forms of the enzyme. The form of NOS3 that works best with the BH4 cofactor dominated in the non-enlarged hearts but uncoupled when levels of its cofactor declined. The scientists believe this enzymatic uncoupling is key to explaining what happens to cause heart enlargement and pumping failure. "In these animals, it was better for the heart not to have NOS3 than to have the enzyme in its uncoupled state," says Kass.

In a second experiment to see if the effects of hypertrophy could be reversed, the researchers attempted to preserve normal NOS3 enzymatic function and fed supplements of cofactor BH4 to the group of mice with the enzyme. After three weeks of therapy, results showed that hypertrophy was markedly reduced and heart function improved.

For all mice with hypertrophy, the condition was surgically produced by constricting the main artery carrying blood from the heart to create pressure and oxidative stress. Hearts of untreated mice with NOS3 doubled in size after three weeks and almost tripled in size after nine weeks. Those treated with BH4 or lacking in NOS3 developed milder hypertrophy.

BH4 and other cofactors are "vitamin-like" chemicals required by enzymes to function properly. "This study shows that nitric-oxide-making enzymes can have both beneficial and detrimental effects on the heart," says Kass. "However, the harmful effects can, at least in mice, be treated with its naturally occurring cofactor, BH4, suggesting a possible therapy in the future."

The researchers plan further experiments to evaluate the therapeutic effects of BH4 in hypertrophy and how it, together with NOS3, compensates for the damage that leads to heart failure. Funding for the two-year study came from the National Institutes of Health (NIH), the American Heart Association, the Peter Belfer Laboratory Foundation, the American Physiological Society and the Bernard Family Foundation.

The lead Hopkins researchers who took part in this study were Eiki Takimoto, M.D., Ph.D.; Hunter Champion, M.D., Ph.D.; and Maxiang Li, M.D., Ph.D. Other Hopkins researchers who took part were Shuxun Ren, M.D.; E. Rene Rodriguez, M.D.; Nazareno Paolocci, Ph.D.; Kathleen Gabrielson, D.V.M., Ph.D.; and Yibin Wang, Ph.D. Other researchers included Barbara Tavazzi, Ph.D., University of Rome, Italy; and Giuseppe Lazzarino, Ph.D., University of Catania, Italy. Senior study author Kass is also the Abraham and Virginia Weiss Professor of Cardiology at Hopkins.

Research to date is limited on BH4, but the cofactor is being used as a treatment for phenylketonuria, a rare genetic disorder in children that results from a deficiency in the enzyme phenylalanine hydroxylase. Loss of this enzyme can lead to mental retardation, organ damage and unusual posture.

Cardiac hypertrophy commonly develops from high blood pressure, which forces the heart to pump harder to circulate blood throughout the body. According to the latest statistics from the American Heart Association, in 2002, 65 million Americans have high blood pressure (defined as systolic pressure of 140 millimeters of mercury or greater, and/or a diastolic pressure of 90 millimeters of mercury or greater, taking antihypertensive medication or being told at least twice by a physician or other health professional that they have high blood pressure). Patients who develop hypertrophy have two to three times the risk of suffering cardiovascular disease, including heart failure and sudden cardiac death.

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>