Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Fickle’ enzyme helps protect, but also can promote heart failure, animal study shows

27.04.2005


Enzymes that make the gas nitric oxide (NO) not only protect the heart from damage due to high blood pressure or a heart attack, but also promote heart failure through overgrowth and enlargement of the muscle tissue, say animal researchers at Johns Hopkins.



The Hopkins study, to be published in the May 2 edition of the Journal of Clinical Investigation, is believed to be the first to suggest future therapies for heart failure using chemical cofactors that control the enzymes’ action.

Nitric oxide’s extensive portfolio of natural effects includes the ability to expand coronary arteries, which improves blood flow, and to help regulate the strength of the heart’s contraction, notes cardiologist David Kass, M.D., a specialist in enlarged hearts, or hypertrophy, and a professor at The Johns Hopkins University School of Medicine and its Heart Institute.


But there is clearly a dark side, a biological cost, to this activity in some situations when the enzyme changes form, Kass added.

In several experiments, the researchers simulated hypertrophy for up to nine weeks in groups of 10 to 40 male mice, some bred with and some bred without the gene for the most prominent of the NO-making enzymes, nitric-oxide synthase-3 (NOS3). NOS3 stops functioning normally when levels of its cofactor, called tetrahydrobiopterin (BH4), decrease.

Results not only showed that BH4 levels drop in hypertrophied hearts, but also that NOS3 uncouples, or splits apart, in the absence of its cofactor. Less NO is produced, and instead, the enzyme produces factors that contribute to oxidative stress in the heart. When the researchers restored levels of BH4, it reversed these harmful effects.

In the first experiment, mice without NOS3 better compensated for the damaging stress of hypertrophy, showing less muscle growth, and fibrosis (scar tissue) and better heart function than mice with the enzyme. Normal mice with the gene for NOS3 could not adapt to the stress, leading the researchers to conclude that the enzymes had lost their protective value to the heart during hypertrophy.

Biochemical analysis revealed that mice with NOS3 had a mix of two chemical forms of the enzyme. The form of NOS3 that works best with the BH4 cofactor dominated in the non-enlarged hearts but uncoupled when levels of its cofactor declined. The scientists believe this enzymatic uncoupling is key to explaining what happens to cause heart enlargement and pumping failure. "In these animals, it was better for the heart not to have NOS3 than to have the enzyme in its uncoupled state," says Kass.

In a second experiment to see if the effects of hypertrophy could be reversed, the researchers attempted to preserve normal NOS3 enzymatic function and fed supplements of cofactor BH4 to the group of mice with the enzyme. After three weeks of therapy, results showed that hypertrophy was markedly reduced and heart function improved.

For all mice with hypertrophy, the condition was surgically produced by constricting the main artery carrying blood from the heart to create pressure and oxidative stress. Hearts of untreated mice with NOS3 doubled in size after three weeks and almost tripled in size after nine weeks. Those treated with BH4 or lacking in NOS3 developed milder hypertrophy.

BH4 and other cofactors are "vitamin-like" chemicals required by enzymes to function properly. "This study shows that nitric-oxide-making enzymes can have both beneficial and detrimental effects on the heart," says Kass. "However, the harmful effects can, at least in mice, be treated with its naturally occurring cofactor, BH4, suggesting a possible therapy in the future."

The researchers plan further experiments to evaluate the therapeutic effects of BH4 in hypertrophy and how it, together with NOS3, compensates for the damage that leads to heart failure. Funding for the two-year study came from the National Institutes of Health (NIH), the American Heart Association, the Peter Belfer Laboratory Foundation, the American Physiological Society and the Bernard Family Foundation.

The lead Hopkins researchers who took part in this study were Eiki Takimoto, M.D., Ph.D.; Hunter Champion, M.D., Ph.D.; and Maxiang Li, M.D., Ph.D. Other Hopkins researchers who took part were Shuxun Ren, M.D.; E. Rene Rodriguez, M.D.; Nazareno Paolocci, Ph.D.; Kathleen Gabrielson, D.V.M., Ph.D.; and Yibin Wang, Ph.D. Other researchers included Barbara Tavazzi, Ph.D., University of Rome, Italy; and Giuseppe Lazzarino, Ph.D., University of Catania, Italy. Senior study author Kass is also the Abraham and Virginia Weiss Professor of Cardiology at Hopkins.

Research to date is limited on BH4, but the cofactor is being used as a treatment for phenylketonuria, a rare genetic disorder in children that results from a deficiency in the enzyme phenylalanine hydroxylase. Loss of this enzyme can lead to mental retardation, organ damage and unusual posture.

Cardiac hypertrophy commonly develops from high blood pressure, which forces the heart to pump harder to circulate blood throughout the body. According to the latest statistics from the American Heart Association, in 2002, 65 million Americans have high blood pressure (defined as systolic pressure of 140 millimeters of mercury or greater, and/or a diastolic pressure of 90 millimeters of mercury or greater, taking antihypertensive medication or being told at least twice by a physician or other health professional that they have high blood pressure). Patients who develop hypertrophy have two to three times the risk of suffering cardiovascular disease, including heart failure and sudden cardiac death.

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>