Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule on immune cells linked to sexual transmission of HIV

25.04.2005


UCLA AIDS Institute discovery points to new drug target



Scientists have long suspected that HIV hijacks immune cells called dendritic cells to infiltrate the immune system. Now UCLA AIDS Institute researchers have shown that blocking HIV’s access to a naturally occurring molecule on dendritic cells may cut their ability to smuggle the virus into other immune cells. Published in the May edition of the Journal of Virology, the discovery may lead to new drugs to prevent sexually transmitted HIV infection.

"Dendritic cells act like sentries to alert the immune system when a foreign agent tries to infiltrate the body," said Dr. Benhur Lee, UCLA assistant professor of microbiology, immunology and molecular genetics. "They also produce a molecule called DC-SIGN that plays a critical role in the sexual transmission of HIV. We wanted to see what would happen if we blocked how DC-SIGN functions in its natural environment."


Dendritic cells reside in the mucosal linings of the mouth, gut, genital and urinary tracts -- sites where sexually transmitted HIV often enters the body. By examining biopsies of human rectal tissues, the UCLA team was the first to study DC-SIGN on dendritic cells in their natural setting instead of a test tube.

Using a sugar-like compound that binds to DC-SIGN and a DC-SIGN-seeking antibody, the scientists were able to block HIV from binding to these dendritic cells.

"Our findings suggest that preventing HIV from binding to the dendritic cells may block their ability to carry HIV to other parts of the immune system," Lee said. "Our next step will be to investigate if this is true."

"We believe our findings point to a new therapeutic target for preventing HIV infection," said Dr. Peter Anton, UCLA professor of medicine. "Drugs could be developed to block the interaction between HIV and DC-SIGN, potentially reducing HIV’s ability to spread infection at mucosal routes into the body."

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>