Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA study finds snow melt causes large ocean plant blooms

22.04.2005


A NASA funded study has found a decline in winter and spring snow cover over Southwest Asia and the Himalayan mountain range is creating conditions for more widespread blooms of ocean plants in the Arabian Sea.





The decrease in snow cover has led to greater differences in both temperature and pressure systems between the Indian subcontinent and the Arabian Sea. The pressure differences generate monsoon winds that mix the ocean water in the Western Arabian Sea. This mixing leads to better growing conditions for tiny, free-floating ocean plants called phytoplankton.

Lead author of the study is Joaquim Goes. He is a senior researcher at the Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine. Goes and colleagues used satellite observations of ocean color to show phytoplankton concentrations in the Western Arabian Sea have increased by more than 350 percent over the past seven years. The study is in this week’s SCIENCE magazine


When winter and spring snow cover is low over Eurasia, the amount of solar energy reflected back into the atmosphere is less. A decline in the amount of snow cover means less of the sun’s energy goes towards melting of snow and evaporation of wet soil. As a result the land mass heats up more in summer creating a larger temperature difference between the water of the Arabian Sea and the Indian subcontinent landmass.

The temperature difference is responsible for a disparity in pressure over land and sea, creating a low pressure system over the Indian subcontinent and a high pressure system over the Arabian Sea. This difference in pressure causes winds to blow from the Southwest Arabian Sea bringing annual rainfall to the subcontinent from June to September. In the Western Arabian Sea, these winds also cause upwelling of cooler nutrient-rich water, creating ideal conditions for phytoplankton to bloom every year during summer.

Since 1997, a reduction in snow has led to wider temperature differences between the land and ocean during summer. As a consequence, sea surface winds over the Arabian Sea have strengthened leading to more intense upwelling and more widespread blooms of phytoplankton along the coasts of Somalia, Yemen and Oman.

According to Goes, while large blooms of phytoplankton can enhance fisheries, exceptionally large blooms could be detrimental to the ecosystem. Increases in phytoplankton amounts can lead to oxygen depletion in the water column and eventually to a decline in fish populations.

The Arabian Sea hosts one of the world’s largest pools of oxygen-poor water at depths between 200 and 1,000 meters (656 to 3,281 feet). Since the Arabian Sea lacks an opening to the north, the deeper waters are not well ventilated. Also when organic matter produced by phytoplankton breaks down and decomposes, more oxygen gets consumed in the process. An increase in phytoplankton could therefore cause oxygen deficiencies in the Arabian Sea to spread, leading to fish mortality.

Oxygen-depleted waters also provide the perfect environment for the growth of a specialized group of bacteria called denitrifying bacteria. These bacteria convert a nitrogen-based nutrient readily consumable by plants in seawater, called nitrate, into forms of nitrogen that most plants cannot use.

One form of nitrogen that plants cannot consume is nitrous oxide, also known as laughing gas. In the atmosphere, nitrous oxide is 310 times more potent as a greenhouse gas than carbon dioxide. Thus, as very large phytoplankton blooms deplete more oxygen from the water, the creation of nitrous oxide in the Arabian Sea could exacerbate climate change, Goes said.

Gretchen Cook-Anderson | EurekAlert!
Further information:
http://www.hq.nasa.gov

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>